IMG-LOGO

Câu hỏi:

18/07/2024 54

Gọi S là tập hợp các giá trị thực của tham số m để hàm số \(y = {x^3} - 3m{x^2} + 4{m^3}\) có hai điểm cực trị A và B sao cho tam giác OAB có diện tích bằng 4 (là gốc tọa độ). Ta có tổng giá trị tất cả các phần tử của tập S bằng

A. 1

B. 2

Đáp án chính xác

C. – 1


D. 0


Trả lời:

verified Giải bởi Vietjack

Đáp án B

Phương pháp:

+) Tìm điều kiện để hàm số có 2 điểm cực trị.

+) Xác định các điểm cực trị của hàm số, nhận xét vị trí các điểm cực trị và tính diện tích tam giác.

Cách giải:

\(y = {x^3} - 3m{x^2} + 4{m^3} \Rightarrow y' = 3{x^2} - 6mx\). Ta có \(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2m\end{array} \right.\)

Để hàm số đã cho có hai điểm cực trị thì \(m \ne 0\). Khi đó:

\(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0 \Rightarrow y\left( 0 \right) = 4{m^3} \Rightarrow A\left( {0;4{m^3}} \right) \in Oy\\x = 2m \Rightarrow y\left( {2m} \right) = 0 \Rightarrow B\left( {2m;0} \right) \in Ox\end{array} \right.\)

Vậy tam giác OAB vuông tại O nên \({S_{\Delta OAB}} = \frac{1}{2}OA.OB \Leftrightarrow 4 = \frac{1}{2}\left| {4{m^3}} \right|\left| {2m} \right|\)

\( \Leftrightarrow \left| {{m^4}} \right| = 1 \Leftrightarrow \left[ \begin{array}{l}m = - 1\\m = 1\end{array} \right. \Rightarrow S\left\{ {1; - 1} \right\}\)

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \(y = f\left( x \right)\) có đạo hàm là hàm số liên tục trên R với đồ thị hàm số \(y = f'\left( x \right)\) như hình vẽ. Biết \(f\left( a \right) > 0\), hỏi đồ thị hàm số \(y = f\left( x \right)\) cắt trục hoành tại nhiều nhất bao nhiêu điểm?

Cho hàm số y = f(x) có đạo hàm là hàm số liên tục trên R với đồ thị hàm số y = f'(x) như hình (ảnh 1)

Xem đáp án » 28/06/2023 676

Câu 2:

Có tất cả bao nhiêu giá trị nguyên dương của tham số m để hàm số \(y = \left( {1 - m} \right){x^4} + 2\left( {m + 3} \right){x^2} + 1\) có đúng một điểm cực tiểu và không có điểm cực đại?

Xem đáp án » 28/06/2023 103

Câu 3:

Hàm số \(y = \frac{1}{3}{x^3} - 2{x^2} + 3x - 1\) nghịch biến trên khoảng nào trong các khoảng sau đây?

Xem đáp án » 28/06/2023 91

Câu 4:

Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = {x^3} - 3{x^2} - 9x + 1\) trên đoạn \(\left[ {0;4} \right]\). Ta có \(m + 2M\) bằng:

Xem đáp án » 28/06/2023 90

Câu 5:

Rút gọn biểu thức \(A = {a^{4{{\log }_{{a^2}}}3}}\) với \(0 < a \ne 1\) ta được kết quả là

Xem đáp án » 28/06/2023 83

Câu 6:

Khoảng cách giữa hai điểm cực trị của đồ thị hàm số \(y = {x^3} + 3{x^2} - 4\)

Xem đáp án » 28/06/2023 79

Câu 7:

Số điểm chung của đồ thị hàm số \(y = {x^3} - 2{x^2} + x - 12\) với trục là Ox

Xem đáp án » 28/06/2023 69

Câu 8:

Rút gọn biểu thức \(A = \frac{{\sqrt[3]{{{a^5}}}.{a^{\frac{7}{3}}}}}{{{a^4}.\sqrt[7]{{{a^{ - 2}}}}}}\) với \(a > 0\) ta được kết quả \(A = {a^{\frac{m}{n}}}\), trong đó \(m,\,n \in \mathbb{N}*\)\(\frac{m}{n}\) là phân số tối giản. Khẳng định nào sau đây đúng?

Xem đáp án » 28/06/2023 68

Câu 9:

Đồ thị hàm số \(y = \frac{{\sqrt {1 - {x^2}} }}{{{x^2} + 2x}}\) có tất cả bao nhiêu tiệm cận đứng?

Xem đáp án » 28/06/2023 66

Câu 10:

Giá trị lớn nhất của hàm số \(y = {x^3} - 3x + 5\) trên đoạn \(\left[ {0;\frac{3}{2}} \right]\)

Xem đáp án » 28/06/2023 63

Câu 11:

Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau. Biết \(OA = a,\,\,OB = 2a\) , và đường thẳng AC tạo với mặt phẳng \(\left( {OBC} \right)\) một góc \({60^0}\). Thể tích khối tứ diện OABC bằng

Xem đáp án » 28/06/2023 63

Câu 12:

Tìm tất cả các giá trị thực của x thỏa mãn đẳng thức \({\log _3}x = 3{\log _3}2 + {\log _9}25 - {\log _{\sqrt 3 }}3\)

Xem đáp án » 28/06/2023 63

Câu 13:

Cho \(0 < a \ne 1\)\(b \in R\). Chọn mệnh đề sai trong các mệnh đề sau:

Xem đáp án » 28/06/2023 63

Câu 14:

Gọi \({m_0}\) là giá trị thực của tham số để đồ thị hàm số \(y = {x^4} + 2m{x^2} + 4\) có 3 điểm cực trị nằm trên các trục tọa độ. Khẳng định nào sau đây là đúng?

Xem đáp án » 28/06/2023 62

Câu 15:

Thể tích của khối cầu bán kính R bằng:

Xem đáp án » 28/06/2023 61

Câu hỏi mới nhất

Xem thêm »
Xem thêm »