Thứ sáu, 22/11/2024
IMG-LOGO

Câu hỏi:

08/07/2024 47

Tính bán kính R mặt cầu ngoại tiếp tứ diện đều ABCD cạnh \(a\sqrt 2 \)

A. \(R = a\sqrt 3 \)          

B. \(R = \frac{{a\sqrt 3 }}{2}\)

Đáp án chính xác

C. \(R = \frac{{3a}}{2}\)


D. \(R = \frac{{3a\sqrt 2 }}{2}\)


Trả lời:

verified Giải bởi Vietjack

Đáp án B

Cách giải:

Gọi G là trọng tâm \(\Delta BCD\), ta có \(AG \bot \left( {BCD} \right)\) nên AG là trục của \(\Delta BCD\).

Gọi M là trung điểm của AB. Qua M dựng đường thẳng \(\Delta \bot AB\), gọi \(\left\{ I \right\} = \Delta \cap AG\).

Tính bán kính R mặt cầu ngoại tiếp tứ diện đều ABCD cạnh a căn bậc hai 2 A. R = a căn bậc hai 3 (ảnh 1)

Do đó mặt cầu ngoại tiếp tứ diện ABCD có tâm là I và bán kính \(R = IA\).

Ta có \(\Delta AIM\)\(\Delta AGB\) là hai tam giác vuông đồng dạng nên:

\(\frac{{AI}}{{AB}} = \frac{{AM}}{{AG}} \Rightarrow AI = AB.\frac{{AM}}{{AG}}\)

Do \(AB = a\sqrt 2 ,\,\,AM = \frac{{a\sqrt 2 }}{2},\,\,AG = \sqrt {{{\left( {a\sqrt 2 } \right)}^2} - \left( {\frac{2}{3}.\frac{{a\sqrt 2 .\sqrt 3 }}{2}} \right)} = \frac{{2a\sqrt 3 }}{3}\)

Khi đó \(R = AI = a\sqrt 2 .\frac{{a\frac{{\sqrt 2 }}{2}}}{{\frac{{2a\sqrt 3 }}{3}}} = \frac{{a\sqrt 3 }}{2}\)

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \(y = f\left( x \right)\) có đạo hàm là hàm số liên tục trên R với đồ thị hàm số \(y = f'\left( x \right)\) như hình vẽ. Biết \(f\left( a \right) > 0\), hỏi đồ thị hàm số \(y = f\left( x \right)\) cắt trục hoành tại nhiều nhất bao nhiêu điểm?

Cho hàm số y = f(x) có đạo hàm là hàm số liên tục trên R với đồ thị hàm số y = f'(x) như hình (ảnh 1)

Xem đáp án » 28/06/2023 618

Câu 2:

Có tất cả bao nhiêu giá trị nguyên dương của tham số m để hàm số \(y = \left( {1 - m} \right){x^4} + 2\left( {m + 3} \right){x^2} + 1\) có đúng một điểm cực tiểu và không có điểm cực đại?

Xem đáp án » 28/06/2023 98

Câu 3:

Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = {x^3} - 3{x^2} - 9x + 1\) trên đoạn \(\left[ {0;4} \right]\). Ta có \(m + 2M\) bằng:

Xem đáp án » 28/06/2023 85

Câu 4:

Hàm số \(y = \frac{1}{3}{x^3} - 2{x^2} + 3x - 1\) nghịch biến trên khoảng nào trong các khoảng sau đây?

Xem đáp án » 28/06/2023 84

Câu 5:

Rút gọn biểu thức \(A = {a^{4{{\log }_{{a^2}}}3}}\) với \(0 < a \ne 1\) ta được kết quả là

Xem đáp án » 28/06/2023 78

Câu 6:

Khoảng cách giữa hai điểm cực trị của đồ thị hàm số \(y = {x^3} + 3{x^2} - 4\)

Xem đáp án » 28/06/2023 74

Câu 7:

Số điểm chung của đồ thị hàm số \(y = {x^3} - 2{x^2} + x - 12\) với trục là Ox

Xem đáp án » 28/06/2023 66

Câu 8:

Đồ thị hàm số \(y = \frac{{\sqrt {1 - {x^2}} }}{{{x^2} + 2x}}\) có tất cả bao nhiêu tiệm cận đứng?

Xem đáp án » 28/06/2023 62

Câu 9:

Cho \(0 < a \ne 1\)\(b \in R\). Chọn mệnh đề sai trong các mệnh đề sau:

Xem đáp án » 28/06/2023 61

Câu 10:

Gọi \({m_0}\) là giá trị thực của tham số để đồ thị hàm số \(y = {x^4} + 2m{x^2} + 4\) có 3 điểm cực trị nằm trên các trục tọa độ. Khẳng định nào sau đây là đúng?

Xem đáp án » 28/06/2023 60

Câu 11:

Rút gọn biểu thức \(A = \frac{{\sqrt[3]{{{a^5}}}.{a^{\frac{7}{3}}}}}{{{a^4}.\sqrt[7]{{{a^{ - 2}}}}}}\) với \(a > 0\) ta được kết quả \(A = {a^{\frac{m}{n}}}\), trong đó \(m,\,n \in \mathbb{N}*\)\(\frac{m}{n}\) là phân số tối giản. Khẳng định nào sau đây đúng?

Xem đáp án » 28/06/2023 60

Câu 12:

Thể tích của khối cầu bán kính R bằng:

Xem đáp án » 28/06/2023 58

Câu 13:

Giá trị lớn nhất của hàm số \(y = {x^3} - 3x + 5\) trên đoạn \(\left[ {0;\frac{3}{2}} \right]\)

Xem đáp án » 28/06/2023 58

Câu 14:

Tìm tất cả các giá trị thực của x thỏa mãn đẳng thức \({\log _3}x = 3{\log _3}2 + {\log _9}25 - {\log _{\sqrt 3 }}3\)

Xem đáp án » 28/06/2023 58

Câu 15:

Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau. Biết \(OA = a,\,\,OB = 2a\) , và đường thẳng AC tạo với mặt phẳng \(\left( {OBC} \right)\) một góc \({60^0}\). Thể tích khối tứ diện OABC bằng

Xem đáp án » 28/06/2023 57

Câu hỏi mới nhất

Xem thêm »
Xem thêm »