Cho hàm số \(y = f\left( x \right) = a{x^3} + b{x^2} + cx + d\) có đạo hàm là hàm số \(y = f'\left( x \right)\) với đồ thị như hình vẽ bên.
Biết rằng đồ thị hàm số \(y = f\left( x \right)\) tiếp xúc với trục hoành tại điểm có hoành độ âm. Khi đó đồ thị hàm số cắt trục tung tại điểm có tung độ là bao nhiêu?
Lời giải
Chọn A
Ta có \(y = f\left( x \right) = a{x^3} + b{x^2} + cx + d \Rightarrow f'\left( x \right) = 3a{x^2} + 2bx + c\)
Đồ thị hàm số \(y = f'\left( x \right)\) đi qua các điểm \(A\left( { - 2;0} \right)\), \(O\left( {0;0} \right)\) và \(C\left( { - 1; - 3} \right)\) nên ta có
\(\left\{ {\begin{array}{*{20}{c}}{12a - 4b + c = 0}\\{c = 0}\\{3a - 2b + c = - 3}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = 1}\\{b = 3}\\{c = 0}\end{array}} \right. \Rightarrow y = f\left( x \right) = {x^3} + 3{x^2} + d\) và \(f'\left( x \right) = 3{x^2} + 6x\).
Gọi tiếp điểm của đồ thị hàm số \(y = f\left( x \right)\) và trục hoành là \(M\left( {{x_0};0} \right)\) với \({x_0} < 0.\)
Tiếp tuyến có hệ số góc
\(k = 0 \Rightarrow y'\left( {{x_0}} \right) = 0 \Leftrightarrow 3{x_0}^2 + 6{x_0} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{{x_0} = 0}\\{{x_0} = - 2}\end{array}} \right.\). Vì \({x_0} < 0 \Rightarrow {x_0} = - 2\).
\(M\left( { - 2;0} \right)\) thuộc đồ thị hàm số \(y = f\left( x \right) \Rightarrow - 8 + 12 + d = 0 \Rightarrow d = - 4.\)
Khi đó \(y = f\left( x \right) = {x^3} + 3{x^2} - 4.\) Đồ thị hàm số cắt trục tung tại điểm có tung độ là \( - 4\).