Tính khoảng cách d giữa 2 điểm cực trị của đồ thị hàm số \(y = \frac{{{x^2} - x + 1}}{{x - 1}}\)
D. \(d = \sqrt 5 \)
Đáp án C
Phương pháp:
+) Giải phương trình \(y' = 0\) tìm các điểm cực trị của hàm số
+) Tính khoảng cách giữa hai điểm cực trị.
Cách giải:
TXĐ: \(D = R\backslash \left\{ 1 \right\}\)
Ta có \(y = \frac{{{x^2} - x + 1}}{{x - 1}} = x + \frac{1}{{x - 1}} \Rightarrow y' = 1 - \frac{1}{{{{\left( {x - 1} \right)}^2}}} = 0 \Leftrightarrow {\left( {x - 1} \right)^2} = 1 \Leftrightarrow \left[ \begin{array}{l}x = 0 \Rightarrow y = - 1\\x = 2 \Rightarrow y = 3\end{array} \right.\)
\( \Rightarrow \) Hai điểm cực trị của đồ thị hàm số là \(A\left( {0; - 1} \right);\,\,\,B\left( {2;3} \right) \Rightarrow AB = \sqrt {{2^2} + {4^2}} = 2\sqrt 5 \)
Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh bằng 2a. Tính thể tích V của khối cầu ngoại tiếp khối chóp S.ABCD.
Tìm tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y = \frac{{x\sqrt {4 - {x^2}} }}{{{x^2} - 3x + 2}}\)
Cho hình chóp đều S.ABCD có cạnh đáy bằng 2a, góc giữa cạnh bên và mặt đáy bằng \({60^0}\). Thể tích V của hình chóp S.ABCD.
Tính thể tích V của khối lăng trụ tam giác đều có tất cả các cạnh bằng a.
Tính khoảng cách d ngắn nhất giữa hai điểm thuộc hai nhánh của đồ thị hàm số \(y = \frac{{2x - 1}}{{x + 1}}\)
Tìm phương trình các đường tiệm cận ngang của đồ thị hàm số \(y = \frac{{\sqrt {4{x^2} + 1} + 2x}}{x}\)
Một hình nón có chiều cao bằng \(\sqrt 5 \), đường kính đáy bằng 6. Tính thể tích V của khối nón đó?
Cho \(\left( {{C_m}} \right):y = 2{x^3} - \left( {3m + 3} \right){x^2} + 6mx - 4\). Gọi T là tập các giá trị của m thỏa mãn \(\left( {{C_m}} \right)\) có đúng hai điểm chung với Ox, tính tổng S các phần tử của T.
Cho hình chóp S.ABCD, M là trung điểm của SA. Gọi \(\left( \alpha \right)\) là mặt phẳng qua M và song song với mặt phẳng (ABCD). Mặt phẳng \(\left( \alpha \right)\) chia khối chóp S.ABCD thành hai khối gồm khối chứa điểm S có thể tích \({V_1}\) và khối chứa điểm A có thể tích \({V_2}\). Tính tỉ số \(\frac{{{V_1}}}{{{V_2}}}\)?
Tìm tất cả các giá trị m để hàm số \(y = mx + 2\sin x - 3\cos \,x\) nghịch biến trên R.
Thiết diện qua trục của một hình nón là một tam giác vuông cân có diện tích là 50. Tính bán kính R của hình nón đó?
Tìm m để phương trình \({\log _2}\sqrt {{x^2} - 3x + 2} + {\log _{\frac{1}{2}}}\left( {x - m} \right) = x - m - \sqrt {{x^2} - 3x + 2} \) có nghiệm?
Tìm tất cả các giá trị của tham số m để hàm số \(y = \frac{{x - 2}}{{mx - 1}}\) đồng biến trên \(\left( {1; + \infty } \right)\)
Cho hình chữ nhật ABCD, cạnh \(AB = 8,\,\,AD = 6\). Gọi M, N lần lượt là trung điểm các cạnh BC và AD. Quay hình chữ nhật ABCD quanh đường thẳng MN, ta được một hình tròn xoay. Tính thể tích V của khối tròn xoay đó?