Cho hàm số \(y = f\left( x \right)\)liên tục trên \(\mathbb{R}\backslash \left\{ 1 \right\}\)và có bảng biến thiên như sau:
Đồ thị hàm số \(y = \frac{1}{{2f\left( x \right) - 5}}\)có bao nhiêu đường tiệm cận đứng?
Lời giải
Chọn B
Dựa vào BBT, phương trình \[2f\left( x \right) - 5 = 0\]\[ \Leftrightarrow f\left( x \right) = \frac{5}{2}\]có \[4\]nghiệm phân biệt thuộc các khoảng \[\left( { - \infty ; - 2} \right)\], \[\left( { - 2;1} \right)\], \[\left( {1;2} \right)\], \[\left( {2; + \infty } \right)\]nên đồ thị hàm số \(y = \frac{1}{{2f\left( x \right) - 5}}\)có \[4\]đường tiệm cận đứng.