Viết tập hợp A là các số \(x\,\, \vdots \,\,5\), thỏa mãn 124 < x < 145 bằng cách liệt kê các phần tử.
Ta có các số chia hết cho 5 là các số có hàng đơn vị là 0 hoặc 5.
Tập hợp A là các số \(x\,\, \vdots \,\,5\), thỏa mãn 124 < x < 145 nên ta có:
A = {125; 130; 135; 140}.
Cho đường tròn (O; 4 cm), đường kính AB. Lấy điểm H thuộc đoạn AO sao cho OH = 1 cm. Kẻ dây cung DC vuông góc với AB tại H.
a) Chứng minh ∆ABC vuông và tính độ dài AC.
b) Tiếp tuyến tại A của (O) cắt BC tại E. Chứng minh ∆CBD cân và \(\frac{{EC}}{{DH}} = \frac{{EA}}{{DB}}\).
c) Gọi I là trung điểm của EA; đoạn IB cắt (O) tại Q. Chứng minh CI là tiếp tuyến của (O) cà từ đó suy ra \(\widehat {ICQ} = \widehat {CBI}\).
d) Tiếp tuyến tại B của (O) cắt IC tại F. Chứng minh ba đường thẳng IB, HC, AF đồng quy.
Cho tam giác nhọn ABC có đường cao AH. Từ H kẻ HE vuông góc với AB và kẻ HF vuông góc với AC.
a) CM: AE.AB = AF.AC;
b) Cho biết AB = 4 cm, AH = 3 cm. Tính AE và BE;
c) Cho biết \[\widehat {HAC} = 30^\circ \]. Tính FC.
Cho đường tròn tâm O đường kính AB = 2R. Gọi C là trung điểm của OA, qua C kẻ đường thẳng vuông góc với OA cắt đường tròn (O) tại hai điểm phân biệt M và N. Trên cung nhỏ BM lấy điểm K (K khác B và M). Gọi H là giao điểm của AK và MN.
a) Chứng minh tứ giác BCHK nội tiếp đường tròn.
b) Chứng minh AK.AH = R2.
Cho hình vẽ biết xx’ // yy’ và \(\widehat {xAB} = 70^\circ \). Tính số đô góc \(\widehat {yBz'}\) và \(\widehat {ABy}\).
Cho 6 điểm A, B, C, D, E, F. Tổng \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EF} \) bằng:
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D, E lần lượt là hình chiếu của H trên AB, AC.
a) Tứ giác ADHE là hình gì? Vì sao?
b) Chứng minh: AB2 = AH.BC.
Cho hình vẽ:
a) Giải thích tại sao xx’ // yy’.
b) Tính số đo \(\widehat {MNB}\).
Cho nửa đường tròn tâm O có đường kính AB. Vẽ các tiếp tuyến Ax, By (Ax, By và nửa đường tròn thuộc cùng một mặt phẳng bờ AB). Gọi M là một điểm bất kì thuộc nửa đường tròn. Tiếp tuyến tại M cắt Ax, By theo thứ tự ở C và D. Chứng minh rằng đường tròn có đường kính CD tiếp xúc với AB.
Cho đường tròn (O) bán kính OA = 4 cm. Dây BC vuông góc với OA tại trung điểm của OA. Tính độ dài BC.
1) Xác định hàm số y = ax + b, biết rằng đồ thị hàm số đi qua hai điểm
A(2; −4) và B(−1; 5).
2) Trên hệ trục tọa độ Oxy, vẽ đồ thị hàm số y = −2x + 1.
Cho hình thang ABCD (AB // CD) có BC = 15 cm. Điểm E thuộc cạnh AD sao cho \(\frac{{AE}}{{AD}} = \frac{1}{3}\). Qua E kẻ đường thẳng song song với CD cắt BC tại F. Tính độ dài BF.
Rút gọn biểu thức:
S = cos(90° − x).sin(180° − x) – sin(90° − x).cos(180° − x).
Cho tam giác ABC vuông tại A, đường cao AH (H ∈ BC). Biết độ dài đoạn BC = 10 cm và \(\sin \widehat {ABC} = \frac{4}{5}\). Tính độ dài các đoạn AC và BH.