Thứ sáu, 15/11/2024
IMG-LOGO

Câu hỏi:

13/07/2024 60

Cho tứ giác ABCD có AB = AD; CB = CD (ta gọi tứ ABCD trong trường hợp này là tứ giác có hình ảnh cánh diều)

a) Chứng minh AC là đường trung trực của BD

b) Tính góc B và góc D (biết \(\widehat A = 100^\circ ,\widehat C = 60^\circ \)).

Trả lời:

verified Giải bởi Vietjack

Cho tứ giác ABCD có AB = AD; CB = CD (ta gọi tứ ABCD trong trường h (ảnh 1)

a) Ta có: AB = AD

nên A nằm trên đường trung trực của BD               (1)

Ta có: CB = CD

nên C nằm trên đường trung trực của BD               (2)

Từ (1) và (2) suy ra AC là đường trung trực của BD

b) Xét ΔBAC và ΔDAC có 

AB = AD (giả thiết)

AC chung

BC = DC (giả thiết)

Do đó ΔBAC = ΔDAC (c.c.c)

Suy ra \(\widehat B = \widehat D\) (hai góc tương ứng)

Xét tứ giác ABCD có

\(\widehat A + \widehat B + \widehat C + \widehat D = 360^\circ \)

Hay \(100^\circ + 2\widehat B + 60^\circ = 360^\circ \)

Suy ra \(\widehat B = \widehat D = \frac{{360^\circ - 100^\circ - 60^\circ }}{2} = 100^\circ \)

Vậy \(\widehat B = \widehat D = 100^\circ \).

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình vuông ABCD tâm O, trên đoạn BC lấy điểm E bất kì, trên tia đối của tia CD lấy điểm F sao cho CE = CF.

a) Chứng minh DE = BF.

b) Tia DE cắt BF tại H. Chứng minh \(\widehat {DHF}\) = 90°

c) Gọi I là trung điểm của EF, K là giao điểm của FE và BD. Chứng minh tứ giác AOIK là hình bình hành.

d) Chứng minh A, H, K thẳng hàng.

Xem đáp án » 11/07/2023 110

Câu 2:

Cho tam giác ABC có AB = 2, BC = 4, CA = 3.

a) Tính \(\overrightarrow {AB} .\overrightarrow {AC} \), rồi suy ra cosA

b) Gọi G là trọng tâm của ABC. Tính \(\overrightarrow {AG} .\overrightarrow {BC} \)

c) Tính giá trị biểu thức S = \(\overrightarrow {GA} .\overrightarrow {GB} + \overrightarrow {GB} .\overrightarrow {GC} + \overrightarrow {GC} .\overrightarrow {GA} \)

d) Gọi AD là phân giác trong của góc BAC (D BC). Tính \(\overrightarrow {A{\rm{D}}} \) theo \(\overrightarrow {AB} ;\overrightarrow {AC} \)suy ra AD.

Xem đáp án » 11/07/2023 94

Câu 3:

Cho đoạn thẳng AB có trung điểm I. M là điểm tùy ý không nằm trên đường thẳng AB. Trên MI kéo dài, lấy một điểm N sao cho IN = MI.

a) Chứng minh: \(\overrightarrow {BN} - \overrightarrow {BA} = \overrightarrow {MB} \)

b) Tìm các điểm D, C sao cho \(\overrightarrow {NA} + \overrightarrow {NI} = \overrightarrow {N{\rm{D}}} ;\overrightarrow {NM} - \overrightarrow {BN} = \overrightarrow {NC} \).

Xem đáp án » 11/07/2023 92

Câu 4:

Cho (O;R) đường kính AD, dây AB , qua B kẻ dây BC vuông góc AD tại H . Tính bán kính R của đường tròn biết AB = 10 cm, BC = 12 cm.

Xem đáp án » 11/07/2023 82

Câu 5:

Một chiếc cổng hình parabol dạng y = \( - \frac{1}{2}{x^2}\) có chiều rộng d = 8m. Hãy tính chiều cao h của cổng (Xem hình minh họa bên cạnh)

Một chiếc cổng hình parabol dạng y = -1/2 x^2 có chiều rộng d = 8m (ảnh 1)

Xem đáp án » 11/07/2023 75

Câu 6:

Một số nếu giảm xuống 3 lần rồi bớt đi 14,6 thì được kết quả là 30,4. Tìm số đó.

Xem đáp án » 11/07/2023 74

Câu 7:

Cho 5 điểm A, B, C, D, E. Chứng minh rằng:

a) \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {E{\rm{A}}} = \overrightarrow {CB} + \overrightarrow {E{\rm{D}}} \).

b) \(\overrightarrow {AC} + \overrightarrow {CD} - \overrightarrow {EC} = \overrightarrow {A{\rm{E}}} - \overrightarrow {DB} + \overrightarrow {CB} \).

Xem đáp án » 11/07/2023 74

Câu 8:

Cho tứ giác ABCD. Tìm điểm O sao cho \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {O{\rm{D}}} = \overrightarrow 0 \)

Xem đáp án » 11/07/2023 72

Câu 9:

Tìm x, y biết x : y : z = 3 : 8 : 5 và 3x + y  2z = 14.

Xem đáp án » 11/07/2023 70

Câu 10:

Cho nửa đường tròn (O) đường kính AD. Trên nửa đường tròn lấy hai điểm B và C, biết AB = BC = \(2\sqrt 5 \) cm, CD = 6 cm. Tìm bán kính đường tròn.

Xem đáp án » 11/07/2023 69

Câu 11:

Xác định đường thẳng đi qua A(4 ; 3), cắt trục tung tại điểm có tung độ là 1 số nguyên dương, cắt trục hoành tại 1 điểm có hoành độ là 1 số nguyên tố.

Xem đáp án » 11/07/2023 68

Câu 12:

Cho 6 điểm A, B, C, D, E, F. Chứng minh rằng:

\(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EF} = \overrightarrow {AD} + \overrightarrow {EB} + \overrightarrow {CF} \)

Xem đáp án » 11/07/2023 66

Câu 13:

Cho 4 điểm A, B, C, D bất kì. Chứng minh \(\overrightarrow {AB} + \overrightarrow {C{\rm{D}}} = \overrightarrow {A{\rm{D}}} + \overrightarrow {CB} \).

Xem đáp án » 11/07/2023 62

Câu 14:

Tìm x, y, z biết \(\frac{{x - 1}}{2} = \frac{{y + 3}}{4} = \frac{{z - 5}}{6}\) và 5z – 3x – 4y = 50.

Xem đáp án » 11/07/2023 61

Câu 15:

Một thiết bị gồm có 3 bộ phận. Trong khoảng thời gian T, việc các bộ phận đó bị hỏng là độc lập với nhau và với các xác suất tương ứng là: 0,1; 0,2; 0,3. Cả thiết bị sẽ bị hỏng nếu có ít nhất một bộ phận hư hỏng. Tìm xác suất thiết bị hoạt động tốt trong thời gian T đó.

Xem đáp án » 11/07/2023 59

Câu hỏi mới nhất

Xem thêm »
Xem thêm »