Cho ∆ABC vuông tại A, M là trung điểm của BC, D, E lần lượt là hình chiếu của M trên AB và AC.
a) Tứ giác ADME là hình gì, tại sao?
b) Chứng minh DE = \(\frac{1}{2}\)BC.
c) Gọi P là trung điểm của BM, Q là trung điểm của MC, chứng minh tứ giác DPQE là hình bình hành. Từ đó chứng minh: tâm đối xứng của hình bình hành DPQE nằm trên đoạn AM.
d) Tam giác vuông ABC ban đầu cần thêm điều kiện gì để hình bình hành DPQE là hình chữ nhật?
a) Ta có D, E là hình chiếu của M trên AB, AC
⇒ DM ⊥ AB và ME ⊥ AC Mà AB ⊥ AC.
⇒ ADME là hình chữ nhật.
b) Xét ΔABC có:
M là trung điểm BC và ME // AB (ADME là hình chữ nhật)
⇒ ME là đường trung bình của ΔABC ⇒ E là trung điểm AC
M là trung điểm BC và MD // AC (ADME là hình chữ nhật)
⇒ MD là đường trung bình của ΔABC ⇒ D là trung điểm AB
Ta có: E là trung điểm AC, D là trung điểm AB
⇒ DE là đường trung bình của ΔABC
⇒ DE = \(\frac{1}{2}\)BC.
c) Xét ΔBAM có D, P lần lượt là trung điểm của AB và BM
⇒ DP là đường trung bình của ΔBAM.
⇒ DP // AM (1)
Chứng minh tương tự với ΔAMC ⇒ EQ // AM (2)
Từ (1) và (2) ⇒ DP // EQ Mà DE // PQ (cmt)
⇒ DPQE là hình bình hành
Gọi O là tâm đối xứng của DPQE (là giao điểm 2 đường chéo)
Ta có P, Q là trung điểm của BM và MC và M là trung điểm BC
⇒ M là trung điểm PQ
Xét hình bình hành DPQE có AM // DP và M là trung điểm PQ
⇒ AM là đường trung bình của DPQE
⇒ AM đi qua trung điểm DE, gọi điểm đó là F
Từ đó AM là trục đối xứng của DPQE tức là đi qua O.
d) Để DPQE là hình chữ nhật thì 4 góc của hình phải bằng 90°
Ta xét ΔBAM nếu DP⊥BM thì AM⊥BM
Xét ΔABC có AM vừa là đường trung tuyến vừa là đường cao
⇒ ΔABC vuông cân tại A
⇒ AB = AC.
Cho \(\cos x = \frac{2}{{\sqrt 5 }},0 < x < \frac{\pi }{2}\). Tính các giá trị lượng giác của góc x.
Một đoạn dây dẫn được uốn thành hình chữ nhật, có các cạnh a = 16 cm, b = 30 cm, trong đó có dòng điện cường độ I = 6A chạy qua. Xác định cảm ứng từ tại tâm hình chữ nhật ?
Trên khoảng \(\left( {\frac{\pi }{2};2\pi } \right)\), phương trình \(\cos \left( {\frac{\pi }{6} - 2\pi } \right) = \sin x\) có bao nhiêu nghiệm ?
Cho ∆ABC có \(\frac{5}{{\sin A}} = \frac{4}{{\sin B}} = \frac{3}{{\sin C}}\) và a = 10. Tính chu vi tam giác.
Cho ∆ABC vuông tại A có đường cao AH. Kẻ HE, HF vuông góc với AB, AC. Chứng minh rằng: \(\frac{{EB}}{{FC}} = \frac{{A{B^3}}}{{A{C^3}}}\).
Cho ∆ABC vuông tại A, đường cao AH. Vẽ đường tròn tâm A, bán kính AH, kẻ các tiếp tuyến BD, CE với đường tròn tâm A (D, E là các tiếp điểm khác H). Chứng minh rằng:
a. 3 điểm D, A, E thẳng hàng.
b. DE tiếp xúc với đường tròn có đường kính BC.
Cho ∆ABC nhọn, đường cao AH. Kẻ HD ⊥ AB, HE ⊥ AC.
a.Chứng minh AD.AB = AE.AC.
b. Chứng minh \(\frac{{AD}}{{BD}} = \frac{{A{H^2}}}{{B{H^2}}}\).Một đội công nhân có 25 người nhận sửa xong một quãng đường trong 9 ngày. Hỏi muốn làm xong quãng đường đó trong 5 ngày thì cần thêm bao nhiêu người ?(mức làm của mỗi người như nhau).
Giải hệ phương trình: \(\left\{ {\begin{array}{*{20}{c}}{{x^4} + 2{x^3}y + {x^2}{y^2} = 2x + 9}\\{{x^2} + 2xy = 6x + 6}\end{array}} \right.\).
Cho đường tròn (O; R) đường kính AB. Kẻ tiếp tuyến Ax, lấy P trên Ax (AP > R). Từ P kẻ tiếp tuyến PM với (O).
a, Chứng minh bốn điểm A, P, M, O cùng thuộc một đường tròn.
b, Chứng minh BM // OP.
c, Đường thẳng vuông góc với AB tại O cắt tia BM tại N. Chứng minh tứ giác OBNP là hình bình hành.
d, Giả sử AN cắt OP tại K; PM cắt ON tại I; PN cắt OM tại J. Chứng minh I, J, K thẳng hàng.
Cho tam giác nhọn ABC. Vẽ đường tròn (O) có đường kính BC, nó cắt cạnh AB, AC theo thứ tự ở D và E.
a. Chứng minh rằng CD ⊥ AB, BE ⊥ AC.
b. Gọi K là giao điểm của BE, CD. Chứng minh AK ⊥ BC.
Cho hình bình hành ABCD. E, F lần lượt là trung điểm của AB và CD.
a. Tứ giác DEBF là hình gì? Vì sao?
b. Chứng minh 3 đường thẳng AC, BD, EF đồng quy.
c. Gọi giao điểm của AC với DE và BF theo thứ tự là M, N. Chứng minh tứ giác EMFN là hình bình hành.
Cho ∆MNP. Gọi D, E, F lần lượt là trung điểm của MN, NP, PM.
a. Chứng minh tứ giác MDEF là hình bình hành.
b. ∆MNP có điều kiện gì thì tứ giác MDEF là hình chữ nhật.
Cho ∆ABC nhọn nội tiếp đường tròn (O, R). Biết AB = \(R\sqrt 3 \) , AC = \(R\sqrt 2 \) . Tính các góc tam giác đó.
Cho đường tròn tâm O bán kính 5cm, dây AB bằng 8cm.
a) Tính khoảng cách từ tâm O đến dây AB.
b) Gọi I là điểm thuộc dây AB sao cho AI = 1cm. Kẻ dây CD đi qua I và vuông góc với AB. Chứng minh rằng CD = AB.