Thứ sáu, 15/11/2024
IMG-LOGO

Câu hỏi:

22/07/2024 108

Cho đường tròn (O), đường kính AB = 2R, dây MN vuông góc với dây AB tại I sao cho IA < IB. Trên đoạn MI lấy điểm E (E ≠ M, I). Tia AE cắt đường tròn tại điểm thứ hai là K.

a. Chứng minh tứ giác IEKB nội tiếp.

b. Chứng minh ∆AME, AKM đồng dạng với nhau và \(A{M^2} = AE.AK\).

c. Chứng minh: \(AE.AK + BI.BA = 4{R^2}\).

d. Xác định vị trí điểm I sao cho chu vi ∆MIO đạt GTLN.

Trả lời:

verified Giải bởi Vietjack

Lời giải:

Media VietJack

a. Ta có: \(\widehat {AKB} = 90^\circ \)(góc nội tiếp chắn nửa đường tròn đường kinh AB)

Tứ giác IEKB có: \(\widehat {AKB} = 90^\circ = \widehat {EKB};\widehat {EIB} = 90^\circ \)

Có tổng 2 góc đối \(\widehat {EKB} + \widehat {EIB} = 90^\circ + 90^\circ = 180^\circ \)

Tứ giác IEKB nội tiếp đường tròn đường kính EB

b. Xét ∆AME và ∆AKM: \(\widehat {MAE}\) chung; \(\widehat {AME} = \widehat {AKM}\) (góc nội tiếp cùng chắn 2 cung AM = AN)

∆AME  ∆AKM(g.g)

\( \Rightarrow \frac{{AM}}{{AK}} = \frac{{AE}}{{AM}}\) (hai cạnh tương ứng tỉ lệ) \( \Rightarrow A{M^2} = AE.AK\)

c. Áp dụng hệ thức lượng vào ∆ANB vuông tại N, đường cao NI AB ta có:

\(BI.BA = N{B^2}\)

Và ta có \(AE.AK = A{M^2} = A{N^2}\) (chứng minh câu b và AM = AN, tính chất đường kính và dây cung)

\( \Rightarrow AE.AK + BI.BA = A{N^2} + N{B^2} = A{B^2}\) (áp dụng Pytago vào ∆ANB)

   \( = {\left( {2R} \right)^2} = 4{R^2}\).

Vậy \(AE.AK + BI.BA = 4{R^2}\).

d. ∆MIO vuông tại I, áp dụng định lí Pytago ta có: \(O{I^2} + M{I^2} = O{M^2} = {R^2}\)

Ta có: \({\left( {MI - IO} \right)^2} \ge 0 \Leftrightarrow 2M{I^2} + 2I{O^2} \ge M{I^2} + I{O^2} + 2MI.IO = {\left( {MI + IO} \right)^2}\)

\( \Rightarrow MI + IO \le \sqrt {2\left( {M{I^2} + I{O^2}} \right)} = R\sqrt 2 \)

Chu vi tam giác MIO là P = MI + IO + MO ≤ \(R\sqrt 2 + R\).

Chu vi P đạt giá trị lớn nhất bằng \(R\sqrt 2 + R\) khi MI + IO = \(R\sqrt 2 \) hay MI = IO = \(\frac{{R\sqrt 2 }}{2}\).

Vậy điểm I nằm trên AO sao cho IO = \(\frac{{R\sqrt 2 }}{2}\) thì chu vi ∆MIO đạt GTLN.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABC có SA (ABC) và AB BC. Xác định góc giữa hai mặt phẳng (SBC) và (ABC).

Xem đáp án » 17/07/2023 599

Câu 2:

Cho hình thang cân ABCD (AB // CD, AB < CD). Gọi O là giao điểm của AD và BC; gọi E là giao điểm của AC và BD. Chứng minh:

a) ∆AOB cân tại O.

b) ∆ABD = ∆BAC.

c) EC = ED.

d) OE là đường trung trực chung của AB và CD.

Xem đáp án » 17/07/2023 163

Câu 3:

Cho ∆ABC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh rằng:

a. AC = EB và AC // BE.

b. Gọi I là một điểm trên AC, K là một điểm trên EB sao cho: AI = EK. Chứng minh: I, M, K  thẳng hàng.

c. Từ E kẻ EH  BC (H  BC). Biết \(\widehat {HBE}\)= 50\(^\circ \), \(\widehat {MEB}\) = 25\(^\circ \), tính \(\widehat {HEM}\) \(\widehat {BME}\).

Xem đáp án » 17/07/2023 136

Câu 4:

Cho ∆ABC vuông tại A, có phân giác AD.

Chứng minh rằng: \(\frac{1}{{AB}} + \frac{1}{{AC}} = \frac{{\sqrt 2 }}{{AD}}\).

Xem đáp án » 17/07/2023 135

Câu 5:

Viết phương trình đường thẳng d trong các trường hợp sau:

a. d đi qua M(–2; 5) và vuông góc với \({d_1}:y = - \frac{1}{2}x + 2\).

b. d // \({d_1}:y = - 3x + 4\) và đi qua giao của 2 đường thẳng\({d_2}:y = 2x - 3;{d_3}:y = 3x - \frac{7}{2}\).

Xem đáp án » 17/07/2023 134

Câu 6:

Cho nửa đường tròn đường kính AB = 2R. Từ A và B kẻ hai tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt các tiếp tuyến Ax, By lần lượt ở C và D Các đường thẳng AD và BC cắt nhau tại N. Chứng minh AB là tiếp tuyến của đường tròn đường kính CD.

Xem đáp án » 17/07/2023 130

Câu 7:

Cho góc nhọn a có \(\sin a = \frac{5}{{13}}\). Tính cosa, tana, cota.

Xem đáp án » 17/07/2023 107

Câu 8:

Cho ∆ABC cân tại A có BD và CE là hai đường trung tuyến của tam giác. Chứng minh tứ giác BCDE là hình thang cân.

Xem đáp án » 17/07/2023 107

Câu 9:

Cho \(\cos a = \frac{5}{{13}};\frac{{3\pi }}{2} < a < 2\pi \). Tính giá trị của sina; tana; cota.

Xem đáp án » 17/07/2023 103

Câu 10:

∆ABC có diện tích S = 2R2. sin B.sinC, với R là độ dài bán kính đường tròn ngoại tiếp của tam giác. Số đo \(\widehat A\)  bằng bao nhiêu?

Xem đáp án » 17/07/2023 95

Câu 11:

Cho \(\sin a + \cos a = \frac{5}{4}\). Khi đó sina.cosa có giá trị bằng bao nhiêu?

Xem đáp án » 17/07/2023 83

Câu 12:

Tính tổng các nghiệm trong đoạn [0; 30] của phương trình tanx = tan3x (1)

Xem đáp án » 17/07/2023 82

Câu 13:

Tìm thương của phép chia, biết rằng nếu thêm 15 vào số bị chia và thêm 5 vào số chia thì thương và số dư không thay đổi.

Xem đáp án » 17/07/2023 79

Câu 14:

Cho ∆ABC vuông tại C, có BC = 1,2 cm, CA = 0,9 cm. Tính các tỉ số lượng giác của \(\widehat A\), từ đó suy ra các tỉ số lượng giác của \(\widehat B\).

Xem đáp án » 17/07/2023 79

Câu 15:

Trong các phát biểu sau, phát biểu nào là mệnh đề đúng:

Xem đáp án » 17/07/2023 77

Câu hỏi mới nhất

Xem thêm »
Xem thêm »