IMG-LOGO

Câu hỏi:

08/07/2024 142

Cho ∆ABC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh rằng:

a. AC = EB và AC // BE.

b. Gọi I là một điểm trên AC, K là một điểm trên EB sao cho: AI = EK. Chứng minh: I, M, K  thẳng hàng.

c. Từ E kẻ EH  BC (H  BC). Biết \(\widehat {HBE}\)= 50\(^\circ \), \(\widehat {MEB}\) = 25\(^\circ \), tính \(\widehat {HEM}\) \(\widehat {BME}\).

Trả lời:

verified Giải bởi Vietjack

Lời giải:

Media VietJack

a. Xét ∆AMC và ∆EMB có: AM = EM (gt); \(\widehat {AMC} = \widehat {EMB}\)(đối đỉnh); BM = MC (gt)

Nên: ∆AMC = ∆EMB (c.g.c) AC = EB

Vì ∆AMC = ∆EMB \(\widehat {MAC} = \widehat {MEB}\)(2 góc có vị trí so le trong được tạo bởi đường thẳng AC và EB cắt đường thẳng AE) AC // BE

b. Xét ∆AMI và ∆EMK có: AM = EM (gt); \(\widehat {MAI} = \widehat {MEK}\)(vì ∆AMC = ∆EMB); AI = EK (gt) nên ∆AMI = ∆EMK (c.g.c) \(\widehat {AMI} = \widehat {EMK}\)

Mà \(\widehat {AMI} + \widehat {IME} = 180^\circ \) (tính chất 2 góc kề bù)

\(\widehat {EMK} + \widehat {IME} = 180^\circ \) 3 điểm I, M, K thẳng hàng

c. Trong tam giác vuông BHE \(\left( {\widehat H = 90^\circ } \right)\) có \(\widehat {HBE} = 50^\circ \)

\( \Rightarrow \widehat {HBE} = 90^\circ - \widehat {HBE} = 90^\circ - 50^\circ = 40^\circ \)

\( \Rightarrow \widehat {HEM} = \widehat {HEB} - \widehat {MEB} = 40^\circ - 25^\circ = 15^\circ \)

\(\widehat {BME}\) là góc ngoài tại đỉnh M của ∆HEM

Nên \(\widehat {BME} = \widehat {HEM} + \widehat {MHE} = 15^\circ + 90^\circ = 105^\circ \) (định lý góc ngoài của tam giác).

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABC có SA (ABC) và AB BC. Xác định góc giữa hai mặt phẳng (SBC) và (ABC).

Xem đáp án » 17/07/2023 602

Câu 2:

Cho hình thang cân ABCD (AB // CD, AB < CD). Gọi O là giao điểm của AD và BC; gọi E là giao điểm của AC và BD. Chứng minh:

a) ∆AOB cân tại O.

b) ∆ABD = ∆BAC.

c) EC = ED.

d) OE là đường trung trực chung của AB và CD.

Xem đáp án » 17/07/2023 172

Câu 3:

Cho ∆ABC vuông tại A, có phân giác AD.

Chứng minh rằng: \(\frac{1}{{AB}} + \frac{1}{{AC}} = \frac{{\sqrt 2 }}{{AD}}\).

Xem đáp án » 17/07/2023 141

Câu 4:

Cho nửa đường tròn đường kính AB = 2R. Từ A và B kẻ hai tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt các tiếp tuyến Ax, By lần lượt ở C và D Các đường thẳng AD và BC cắt nhau tại N. Chứng minh AB là tiếp tuyến của đường tròn đường kính CD.

Xem đáp án » 17/07/2023 138

Câu 5:

Viết phương trình đường thẳng d trong các trường hợp sau:

a. d đi qua M(–2; 5) và vuông góc với \({d_1}:y = - \frac{1}{2}x + 2\).

b. d // \({d_1}:y = - 3x + 4\) và đi qua giao của 2 đường thẳng\({d_2}:y = 2x - 3;{d_3}:y = 3x - \frac{7}{2}\).

Xem đáp án » 17/07/2023 137

Câu 6:

Cho đường tròn (O), đường kính AB = 2R, dây MN vuông góc với dây AB tại I sao cho IA < IB. Trên đoạn MI lấy điểm E (E ≠ M, I). Tia AE cắt đường tròn tại điểm thứ hai là K.

a. Chứng minh tứ giác IEKB nội tiếp.

b. Chứng minh ∆AME, AKM đồng dạng với nhau và \(A{M^2} = AE.AK\).

c. Chứng minh: \(AE.AK + BI.BA = 4{R^2}\).

d. Xác định vị trí điểm I sao cho chu vi ∆MIO đạt GTLN.

Xem đáp án » 17/07/2023 127

Câu 7:

Cho góc nhọn a có \(\sin a = \frac{5}{{13}}\). Tính cosa, tana, cota.

Xem đáp án » 17/07/2023 113

Câu 8:

Cho ∆ABC cân tại A có BD và CE là hai đường trung tuyến của tam giác. Chứng minh tứ giác BCDE là hình thang cân.

Xem đáp án » 17/07/2023 109

Câu 9:

Cho \(\cos a = \frac{5}{{13}};\frac{{3\pi }}{2} < a < 2\pi \). Tính giá trị của sina; tana; cota.

Xem đáp án » 17/07/2023 108

Câu 10:

∆ABC có diện tích S = 2R2. sin B.sinC, với R là độ dài bán kính đường tròn ngoại tiếp của tam giác. Số đo \(\widehat A\)  bằng bao nhiêu?

Xem đáp án » 17/07/2023 99

Câu 11:

Tính tổng các nghiệm trong đoạn [0; 30] của phương trình tanx = tan3x (1)

Xem đáp án » 17/07/2023 89

Câu 12:

Cho \(\sin a + \cos a = \frac{5}{4}\). Khi đó sina.cosa có giá trị bằng bao nhiêu?

Xem đáp án » 17/07/2023 83

Câu 13:

Tìm thương của phép chia, biết rằng nếu thêm 15 vào số bị chia và thêm 5 vào số chia thì thương và số dư không thay đổi.

Xem đáp án » 17/07/2023 80

Câu 14:

Trong các phát biểu sau, phát biểu nào là mệnh đề đúng:

Xem đáp án » 17/07/2023 80

Câu 15:

Cho ∆ABC vuông tại C, có BC = 1,2 cm, CA = 0,9 cm. Tính các tỉ số lượng giác của \(\widehat A\), từ đó suy ra các tỉ số lượng giác của \(\widehat B\).

Xem đáp án » 17/07/2023 80

Câu hỏi mới nhất

Xem thêm »
Xem thêm »