Cho ∆ABC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh rằng:
a. AC = EB và AC // BE.
b. Gọi I là một điểm trên AC, K là một điểm trên EB sao cho: AI = EK. Chứng minh: I, M, K thẳng hàng.
c. Từ E kẻ EH ⊥ BC (H ∈ BC). Biết \(\widehat {HBE}\)= 50\(^\circ \), \(\widehat {MEB}\) = 25\(^\circ \), tính \(\widehat {HEM}\) và \(\widehat {BME}\).
Lời giải:
a. Xét ∆AMC và ∆EMB có: AM = EM (gt); \(\widehat {AMC} = \widehat {EMB}\)(đối đỉnh); BM = MC (gt)
Nên: ∆AMC = ∆EMB (c.g.c) ⇒ AC = EB
Vì ∆AMC = ∆EMB ⇒ \(\widehat {MAC} = \widehat {MEB}\)(2 góc có vị trí so le trong được tạo bởi đường thẳng AC và EB cắt đường thẳng AE) ⇒ AC // BE
b. Xét ∆AMI và ∆EMK có: AM = EM (gt); \(\widehat {MAI} = \widehat {MEK}\)(vì ∆AMC = ∆EMB); AI = EK (gt) nên ∆AMI = ∆EMK (c.g.c) ⇒ \(\widehat {AMI} = \widehat {EMK}\)
Mà \(\widehat {AMI} + \widehat {IME} = 180^\circ \) (tính chất 2 góc kề bù)
⇒ \(\widehat {EMK} + \widehat {IME} = 180^\circ \) ⇒ 3 điểm I, M, K thẳng hàng
c. Trong tam giác vuông BHE \(\left( {\widehat H = 90^\circ } \right)\) có \(\widehat {HBE} = 50^\circ \)
\( \Rightarrow \widehat {HBE} = 90^\circ - \widehat {HBE} = 90^\circ - 50^\circ = 40^\circ \)
\( \Rightarrow \widehat {HEM} = \widehat {HEB} - \widehat {MEB} = 40^\circ - 25^\circ = 15^\circ \)
\(\widehat {BME}\) là góc ngoài tại đỉnh M của ∆HEM
Nên \(\widehat {BME} = \widehat {HEM} + \widehat {MHE} = 15^\circ + 90^\circ = 105^\circ \) (định lý góc ngoài của tam giác).
Cho hình thang cân ABCD (AB // CD, AB < CD). Gọi O là giao điểm của AD và BC; gọi E là giao điểm của AC và BD. Chứng minh:
a) ∆AOB cân tại O.
b) ∆ABD = ∆BAC.
c) EC = ED.
d) OE là đường trung trực chung của AB và CD.
Cho ∆ABC vuông tại A, có phân giác AD.
Chứng minh rằng: \(\frac{1}{{AB}} + \frac{1}{{AC}} = \frac{{\sqrt 2 }}{{AD}}\).
Viết phương trình đường thẳng d trong các trường hợp sau:
a. d đi qua M(–2; 5) và vuông góc với \({d_1}:y = - \frac{1}{2}x + 2\).
b. d // \({d_1}:y = - 3x + 4\) và đi qua giao của 2 đường thẳng\({d_2}:y = 2x - 3;{d_3}:y = 3x - \frac{7}{2}\).
Cho đường tròn (O), đường kính AB = 2R, dây MN vuông góc với dây AB tại I sao cho IA < IB. Trên đoạn MI lấy điểm E (E ≠ M, I). Tia AE cắt đường tròn tại điểm thứ hai là K.
a. Chứng minh tứ giác IEKB nội tiếp.
b. Chứng minh ∆AME, AKM đồng dạng với nhau và \(A{M^2} = AE.AK\).
c. Chứng minh: \(AE.AK + BI.BA = 4{R^2}\).
d. Xác định vị trí điểm I sao cho chu vi ∆MIO đạt GTLN.