Thứ sáu, 15/11/2024
IMG-LOGO

Câu hỏi:

23/07/2024 83

Cho tam giác ABC vuông tại A, đường cao AH. Gọi D là điểm đối xứng với H qua AB, E là điểm đối xứng với H qua AC.

a) Chứng minh D đối xứng với E qua A.

b) Tam giác DHE là tam giác gì? Vì sao?

c) Tứgiác BDEC là hình gì? Vì sao?

Trả lời:

verified Giải bởi Vietjack

Cho tam giác ABC vuông tại A, đường cao AH. Gọi D là điểm đối xứng với H qua  (ảnh 1)

a) Vì D là điểm đối xứng với H qua AB nên AB là đường trung trực của DH suy ra AH = AD (1)

Vì E đối xứng với H qua AC nên AC là đường trung trực của HE suy ra AH = AE (2)

Từ (1) và (2) suy ra AD = AE (3)

Mặt khác \(\widehat {DAB} = \widehat {BAH}\); \(\widehat {HAC} = \widehat {CAE}\)

 \(\widehat {BAH} + \widehat {HAC} = 90^\circ \)

Do đó \(\widehat {DAB} + \widehat {BAH} + \widehat {HAC} + \widehat {CAE} = 180^\circ \)

Tức là D, A, E thẳng hành (4)

Từ (3) và (4) suy ra D và E đối xứng với nhau qua A.

b) ∆DHE có HA là trung điểm và \(HA = \frac{1}{2}DE\) nên ∆DHE vuông tại H.

c) Xét ∆ADB và ∆AHB có:

AD = AH

AB chung

DB = BH (D đối xứng với H qua AB)

Do đó ∆ADB = ∆AHB (c.c.c)

Suy ra \(\widehat {ADB} = \widehat {AHB} = 90^\circ \)

Tương tự ta có: ∆AHC = ∆AEC

Do đó \(\widehat {AEC} = \widehat {AHC} = 90^\circ \)

Suy ra BD // CE (cùng vuông góc với DE)

Nên tứ giác BAEC là hình thang có hai góc vuông kề cạnh bên DE nên BAEC là hình thang vuông.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đường tròn (O; R) và điểm A sao cho OA = 2R. Vẽ tiếp tuyến AB; AC với (O) (B, C là tiếp điểm).

a) Chứng minh tam giác ABC đều.

b) Đường vuông góc với OB tại O cắt AC tại D. Đường vuông góc với OC tại O cắt AB tại E. Chứng minh tứ giác ADOE là hình thoi.

Xem đáp án » 31/07/2023 146

Câu 2:

Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C, trên tia Oy lấy hai điểm B, D sao cho OA = OB; OC = OD (A nằm giữa O và C; B nằm giữa O và D). So sánh \(\widehat {CAD}\)\(\widehat {CBD}\).

Xem đáp án » 31/07/2023 143

Câu 3:

Cho tam giác ABC, I là một điểm trong tam giác, IA, IB, IC theo thứ tự cắt BC, CA, AB ở M, N, P. Chứng minh rằng: \(\frac{{NA}}{{NC}} + \frac{{PA}}{{PB}} = \frac{{IA}}{{IM}}\).

Xem đáp án » 31/07/2023 132

Câu 4:

Cho tam giác ABC có \(\widehat A = 90^\circ \), AB = AC, điểm D thuộc cạnh AB. Đường thẳng qua B và vuông góc với CD cắt đường thẳng CA ở K.

Chứng minh rằng: AK = AD.

Xem đáp án » 31/07/2023 86

Câu 5:

Trong hệ tọa độ Oxy cho tam giác ABC có B(9; 7), C(11; −1). Gọi M, N lần lượt là trung điểm của AB, AC. Tìm tọa độ vectơ MN.

Xem đáp án » 31/07/2023 85

Câu 6:

Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có trực tâm O . Gọi M là trung điểm của BC; N, P lần lượt là chân đường cao kẻ từ B và C. Đường tròn đi qua 3 điểm M,N,P có phương trình: (T) \({\left( {x - 1} \right)^2} + {\left( {y + \frac{1}{2}} \right)^2} = \frac{{25}}{4}\). Tìm phương trình đường tròn ngoại tiếp tam giác ABC.

Xem đáp án » 31/07/2023 85

Câu 7:

Cho a, b > 0 và a + b = 4. Tìm GTLN của \(P = \left( {1 - \frac{1}{a}} \right)\left( {1 - \frac{1}{b}} \right)\).

Xem đáp án » 31/07/2023 82

Câu 8:

Cho hình bình hành ABCD, có AC là đường chéo lớn. Kẻ CE vuông góc với AB tại E, BI vuông góc với AC tại I.

Chứng minh rằng:

Cho hình bình hành ABCD, có AC là đường chéo lớn. Kẻ CE vuông góc với AB  (ảnh 1)

Xem đáp án » 31/07/2023 80

Câu 9:

Cho hình bình hành ABCD, AB = 2AD. Gọi P, Q lần lượt là trung điểm của AB và CD.

a) Tứ giác APQD là hình gì? Vì sao?

b) Gọi I là giao điểm AQ và PD, gọi K là giao điểm của BQ và CP. Chứng minh tứ giác IPKQ là hình chữ nhật.

Xem đáp án » 31/07/2023 77

Câu 10:

Cho ∆ABC có 3 góc nhọn, AH là đường cao. Vẽ HE vuông góc với AB tại E, HF vuông góc AC tại F .

a) Chứng minh: AE.AB = AF.AC.

b) Cho BH = 3cm, AH = 4cm. Tính AE, BE.

Xem đáp án » 31/07/2023 73

Câu 11:

Cho tam giác ABC vuông tại A có đường cao AH. Vẽ HE vuông góc với AB tại E, vẽ HF vuông góc với AC tại F.

Chứng minh rằng: , AH² = AE.AB.

Xem đáp án » 31/07/2023 73

Câu 12:

Khi nhân một số với 205, do vô ý Tâm đã quên viết chữ số 0 của số 205 nên tích giảm đi 42 120 đơn vị. Tìm tích đúng của phép nhân đó.

Xem đáp án » 31/07/2023 71

Câu 13:

Tính tổng của tất cả số tự nhiên x, biết x là số có 2 chữ số và 12 < x < 91.

Xem đáp án » 31/07/2023 69

Câu 14:

Có bao nhiêu số nguyên dương không lớn hơn 2020 mà chia hết cho 2 hoặc cho 3?

Xem đáp án » 31/07/2023 65

Câu 15:

Một nhóm học sinh có 6 bạn nam và 5 bạn nữ có bao nhiêu cách chọn ra 5 bạn trong đó có cả nam và nữ?

Xem đáp án » 31/07/2023 65

Câu hỏi mới nhất

Xem thêm »
Xem thêm »