Cho tứ giác ABCD nội tiếp (O). Gọi E là giao điểm của AB, CD. F là giao điểm của AC và BD. Đường tròn ngoại tiếp tam giác BDE cắt đường tròn ngoại tiếp tam giác FDC tại điểm K khác D. Tiếp tuyến của (O) tại B và C cắt nhau tại M.
a) Chứng minh tứ giác BKCM nội tiếp.
b) Chứng minh E, M, F thẳng hàng.
Lời giải
a) Vì điểm K nằm trên đường tròn ngoại tiếp ΔBDE nên tứ giác DKBE nội tiếp đường tròn
Suy ra \(\widehat {BEK} = \widehat {B{\rm{D}}K}\) (2 góc nội tiếp cùng chắn cung BK)
Hay \(\widehat {AEK} = \widehat {{\rm{FD}}K}\)
Vì tứ giác DKFC nội tiếp đường tròn nên \(\widehat {FCK} = \widehat {{\rm{FD}}K}\)
Suy ra \(\widehat {AEK} = \widehat {{\rm{FC}}K}\), hay \(\widehat {AEK} = \widehat {{\rm{AC}}K}\)
Do đó tứ giác AKCE nội tiếp đường tròn
Suy ra \(\widehat {K{\rm{AE}}} + \widehat {KCE} = 180^\circ \)
Mà \(\widehat {KC{\rm{D}}} + \widehat {KCE} = 180^\circ \) (hai góc kề bù)
Do đó \(\widehat {K{\rm{AE}}} = \widehat {KC{\rm{D}}}\) hay \(\widehat {K{\rm{AB}}} = \widehat {KC{\rm{D}}}\)
Do tứ giác BKDE nội tiếp đường tròn nên \(\widehat {KD{\rm{E}}} + \widehat {KBE} = 180^\circ \)
Mà \(\widehat {KBA} + \widehat {KBE} = 180^\circ \) (hai góc kề bù)
Do đó \(\widehat {KD{\rm{E}}} = \widehat {KBA}\) hay \(\widehat {{\rm{KBA}}} = \widehat {KDC}\)
Xét ΔDKC và ΔBKA có:
\(\widehat {{\rm{KBA}}} = \widehat {KDC}\) (chứng minh trên)
\(\widehat {K{\rm{AB}}} = \widehat {KC{\rm{D}}}\) (chứng minh trên)
Suy ra (g.g)
Do đó \(\frac{{KC}}{{K{\rm{A}}}} = \frac{{K{\rm{D}}}}{{KB}}\)
Hay \(\frac{{KC}}{{KD}} = \frac{{KA}}{{KB}}\)
Ta có: \(\widehat {BK{\rm{D}}} = \widehat {DKC} + \widehat {BKC}\); \(\widehat {AKC} = \widehat {BKA} + \widehat {BKC}\)
Mà \(\widehat {DKC} = \widehat {BK{\rm{A}}}\), suy ra \(\widehat {DKB} = \widehat {CK{\rm{A}}}\)
Xét ΔKBD và ΔKAC có:
\(\widehat {DKB} = \widehat {CK{\rm{A}}}\) (chứng minh trên)
\(\frac{{KC}}{{KD}} = \frac{{KA}}{{KB}}\) (chứng minh trên)
Suy ra (c.g.c)
Do đó \(\widehat {KB{\rm{D}}} = \widehat {KAC}\)
Hay \(\widehat {KBF} = \widehat {KAF}\)
Suy ra tứ giác AKFB nội tiếp đường tròn
Do đó \(\widehat {BKF} = \widehat {{\rm{BAF}}}\) (2 góc nội tiếp chắn cung BF)
Suy ra \(\widehat {BKF} = \widehat {BAC} = \widehat {B{\rm{D}}C}\) (do \(\widehat {BAC},\widehat {B{\rm{D}}C}\) cùng chắn cung BC) (1)
Ta có: \(\widehat {B{\rm{D}}C} = \widehat {F{\rm{D}}C} = \widehat {FKC}\) (cùng chắn cung FC) (2)
Xét ΔBMC có \(\widehat {MBC} + \widehat {MCB} + \widehat {BMC} = 180^\circ \) (tổng ba góc trong một tam giác)
Mà \(\widehat {MBC} = \widehat {BAC},\widehat {MCB} = \widehat {B{\rm{D}}C}\)(Góc tạo bởi tiếp tuyến và dây cung)
Suy ra \(\widehat {BAC} + \widehat {BDC} + \widehat {BMC} = 180^\circ \) (3)
Từ (1); (2) và (3) suy ra \(\widehat {BKF} + \widehat {FKC} + \widehat {BMC} = 180^\circ \)
Hay \(\widehat {BKC} + \widehat {BMC} = 180^\circ \)
Do đó tứ giác BKCM nội tiếp đường tròn
b) Ta có \(\widehat {BKF} = \widehat {B{\rm{D}}C}\) (chứng minh câu a)
Suy ra \(\widehat {BKF} = \widehat {B{\rm{DE}}} = \widehat {BKE}\) (Do tứ giác DKBE nội tiếp đường tròn)
Mà 2 điểm F và E nằm cùng phía so với BK
Suy ra 3 điểm K; F; E thẳng hàng
Hay F nằm trên KE (*)
Vì \(\widehat {BKF} = \widehat {BAC},\widehat {CKF} = \widehat {B{\rm{D}}C},\widehat {BAC} = \widehat {B{\rm{D}}C}\)
Nên \(\widehat {BKF} = \widehat {CKF}\)
Suy ra \(\widehat {BKE} = \widehat {CKE}\) (Do K; F; E thẳng hàng)
Do đó KE là phân giác của \(\widehat {BKC}\) (4)
Xét (O) có MB, MC là 2 tiếp tuyến cắt nhau tại M
Nên MB = MC
Do đó tam giác MBC cân tại M
Suy ra \(\widehat {MBC} = \widehat {MCB}\)
Xét tứ giác BKCM nội tiếp đường tròn có \(\widehat {MBC} = \widehat {MKC},\widehat {MCB} = \widehat {MKB}\)
Suy ra \(\widehat {MKC} = \widehat {MKB}\)
Do đó KM là phân giác của \(\widehat {BKC}\) (5)
Từ (4) và (5) suy ra 3 điểm K; M; E thẳng hàng hay M nằm trên KE (**)
Từ (*) và (**) suy ra 3 điểm E; M; F thẳng hàng
Vậy 3 điểm E; M; F thẳng hàng.
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu H trên AB, AC. Chứng minh:
a) \(\frac{{FB}}{{FC}} = \frac{{A{B^3}}}{{A{C^3}}}\);
b) BC2 = 3AH2 + BE2 + CF2;
c) \(BE\sqrt {CH} + CF\sqrt {BH} = AH\sqrt {BC} \).
Cho đoạn thẳng AB. Trên cùng một nửa mặt phẳng bờ AB kẻ hai tia Ax, By vuông góc với AB. Trên tia Ax và By lần lượt lấy hai điểm C và D sao cho \(\widehat {CO{\rm{D}}} = 90^\circ \) (O là trung điểm của AB). Chứng minh rằng:
a) CD = AC + BD
b) CD là tiếp tuyến của đường tròn đường kính AB
c) \(AC.B{\rm{D}} = \frac{{A{B^2}}}{4}\).
Cho tam giác ABC cân tại A có đường cao AH, kẻ BK vuông góc AC. Chứng minh:
\(\frac{1}{{B{K^2}}} = \frac{1}{{4B{C^2}}} + \frac{1}{{4A{H^2}}}\).
Cho tam giác ABC cân tại B. Trên cạnh AB lấy điểm M, trên cạnh BC lấy điểm N sao cho AM = CN. Kẻ BH ⊥ AC tại H.
a) Chứng minh AH = HC.
b) Chứng minh ∆BAN = ∆BCM.
c) Gọi O là giao điểm của AN và CM. Chứng minh 3 điểm B, O, H thẳng hàng.
Cho hàm số y = x + 1 có đồ thị là (d) và hàm số y = –x + 3 có đồ thị là (d’)
a) Vẽ (d) và (d’) trên cùng một mặt phẳng tọa độ.
b) Hai đường thẳng (d) và (d’) cắt nhau tại C và cắt trục Ox theo thứ tự tại A và B. Tìm tọa độ các điểm A, B, C.
c) Tính chu vi và diện tích của tam giác ABC.
d) Tính góc tạo bởi đường thẳng y = x + 1 với trục Ox.
Cho tam giác ABC có các góc thỏa mãn: \(2c{\rm{osA + cosB + cosC = }}\frac{9}{4}\).
Tính \(\sin \frac{A}{2}\).
Cho tam giác ABC vuông tại A và đường cao AH. Biết \(\widehat A = 90^\circ \), AB = 15 cm, AC = 20 cm.
a) Tính cạnh BC.
b) Tính độ dài của AH, BH và HC.
Cho hàm số y = (m – 2)x + 2m + 1 (m là tham số)
a) Với giá trị nào của m thì hàm số đồng biến?
b) Tìm m để đồ thị hàm số song song đường thẳng y = 2x – 1.
c) Tìm điểm cố định mà đồ thị hàm số luôn luôn đi qua với mọi giá trị m.