Cho \(\cos a = \frac{2}{3}\). Tính \(B = \cos \frac{{3a}}{2}\cos \frac{a}{2}\).
Áp dụng công thức biến đổi tích thành tổng, ta có:
\(B = \cos \frac{{3a}}{2}\cos \frac{a}{2}\)
\( = \frac{1}{2}\left[ {\cos \left( {\frac{{3a}}{2} + \frac{a}{2}} \right) + \cos \left( {\frac{{3a}}{2} - \frac{a}{2}} \right)} \right]\)
\( = \frac{1}{2}\left[ {\cos 2a + \cos a} \right]\)
Mà cos2a = 2cos2a – 1 = \(2.{\left( {\frac{2}{3}} \right)^2} - 1 = 2.\frac{4}{9} - 1 = - \frac{1}{9}\)
Do đó \(B = \frac{1}{2}\left[ {\cos 2a + \cos a} \right] = \frac{1}{2}.\left[ { - \frac{1}{9} + \frac{2}{3}} \right] = \frac{5}{{18}}\).
Cho \(cos2x = \frac{1}{4}\). Tính: \(A = \cos \left( {x + \frac{\pi }{6}} \right)\cos \left( {x - \frac{\pi }{6}} \right)\); \(B = \sin \left( {x + \frac{\pi }{3}} \right)\sin \left( {x - \frac{\pi }{3}} \right)\).
Cho \(cos2a = \frac{1}{3}\) với \(\frac{\pi }{2} < a < \pi \). Tính: sina, cosa, tana.
Cho \(\cos a = \frac{3}{5}\) với \(0 < a < \frac{\pi }{2}\). Tính \(\sin \left( {a + \frac{\pi }{6}} \right),cos\left( {a - \frac{\pi }{3}} \right),\tan \left( {a + \frac{\pi }{4}} \right)\).
Tính: \[D = \frac{{\sin \frac{{7\pi }}{9} + \sin \frac{\pi }{9}}}{{{\rm{cos}}\frac{{7\pi }}{9} - \cos \frac{\pi }{9}}}\].
Một sợi cáp R được gắn vào một cột thẳng đứng ở vị trí cách mặt đất 14 m. Một sợi cáp S khác cũng được gắn vào cột đó ở vị trí cách mặt đất 12 m. Biết rằng hai sợi cáp trên cùng được gắn với mặt đất tại một vị trí cách chân cột 15 m (Hình 17).
Một sợi cáp R được gắn vào một cột thẳng đứng ở vị trí cách mặt đất 14 m. Một sợi cáp S khác cũng được gắn vào cột đó ở vị trí cách mặt đất 12 m. Biết rằng hai sợi cáp trên cùng được gắn với mặt đất tại một vị trí cách chân cột 15 m (Hình 17).
Tìm góc α (làm tròn kết quả đến hàng đơn vị theo đơn vị độ).
Khi các biểu thức đều có nghĩa, hãy tính tan (a – b) bằng cách biến đổi \[tan\left( {a - b} \right) = tan\left[ {a + \left( { - b} \right)} \right]\] và sử dụng công thức tan(a + b) có được ở bài trước
Sử dụng công thức cộng đối với sin và côsin, hãy tính tan(a + b) theo tana và tanb khi các biểu thức đều có nghĩa.
Cho \(a = \frac{\pi }{6},b = \frac{\pi }{3}\). Hãy tính sina, cosa, sinb, cosb và sin(a + b). Từ đó rút ra đẳng thức sin(a + b) = sina cosb + cosa sinb (*).