Thứ sáu, 22/11/2024
IMG-LOGO

Câu hỏi:

23/07/2024 127

Cho sina + cosa = 1. Tính: sin2a.

Trả lời:

verified Giải bởi Vietjack

Ta có: sina + cosa = 1

Þ (sina + cosa)2 = 12

Þ sin2a + 2sina cosa + cos2a = 1

Þ 2sina cosa + (sin2a + cos2a) = 1

Þ sin2a + 1 = 1

Þ sin2a = 0.

Vậy với sina + cosa = 1 thì sin2a = 0.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho \(cos2x = \frac{1}{4}\). Tính: \(A = \cos \left( {x + \frac{\pi }{6}} \right)\cos \left( {x - \frac{\pi }{6}} \right)\); \(B = \sin \left( {x + \frac{\pi }{3}} \right)\sin \left( {x - \frac{\pi }{3}} \right)\).

Xem đáp án » 03/08/2023 150

Câu 2:

Cho \(\cos a = \frac{3}{5}\) với \(0 < a < \frac{\pi }{2}\). Tính \(\sin \left( {a + \frac{\pi }{6}} \right),cos\left( {a - \frac{\pi }{3}} \right),\tan \left( {a + \frac{\pi }{4}} \right)\).

Xem đáp án » 03/08/2023 131

Câu 3:

Cho \(cos2a = \frac{1}{3}\) với \(\frac{\pi }{2} < a < \pi \). Tính: sina, cosa, tana.

Xem đáp án » 03/08/2023 128

Câu 4:

Tính: \(\sin \frac{\pi }{8},\cos \frac{\pi }{8}\).

Xem đáp án » 03/08/2023 121

Câu 5:

Cho \(\tan \frac{a}{2} = - 2\). Tính tana.

Xem đáp án » 03/08/2023 103

Câu 6:

Tính: \[D = \frac{{\sin \frac{{7\pi }}{9} + \sin \frac{\pi }{9}}}{{{\rm{cos}}\frac{{7\pi }}{9} - \cos \frac{\pi }{9}}}\].

Xem đáp án » 03/08/2023 90

Câu 7:

Một sợi cáp R được gắn vào một cột thẳng đứng ở vị trí cách mặt đất 14 m. Một sợi cáp S khác cũng được gắn vào cột đó ở vị trí cách mặt đất 12 m. Biết rằng hai sợi cáp trên cùng được gắn với mặt đất tại một vị trí cách chân cột 15 m (Hình 17).

Một sợi cáp R được gắn vào một cột thẳng đứng Tính tan alpha, ở đó alpha là góc giữa hai sợi cáp trên.  (ảnh 1)
Tính tanα, ở đó α là góc giữa hai sợi cáp trên.

Xem đáp án » 03/08/2023 84

Câu 8:

Cho \(\sin a = \frac{2}{{\sqrt 5 }}\). Tính cos2a, cos4a.

Xem đáp án » 03/08/2023 80

Câu 9:

Một sợi cáp R được gắn vào một cột thẳng đứng ở vị trí cách mặt đất 14 m. Một sợi cáp S khác cũng được gắn vào cột đó ở vị trí cách mặt đất 12 m. Biết rằng hai sợi cáp trên cùng được gắn với mặt đất tại một vị trí cách chân cột 15 m (Hình 17).

Một sợi cáp R được gắn vào một cột Tìm góc alpha (làm tròn kết quả đến hàng đơn vị theo đơn vị độ) (ảnh 1)

Tìm góc α (làm tròn kết quả đến hàng đơn vị theo đơn vị độ).

Xem đáp án » 03/08/2023 77

Câu 10:

Cho tan(a + b) = 3, tan(a – b) = 2. Tính: tan2a, tan2b.

Xem đáp án » 03/08/2023 74

Câu 11:

Khi các biểu thức đều có nghĩa, hãy tính tan (a – b) bằng cách biến đổi \[tan\left( {a - b} \right) = tan\left[ {a + \left( { - b} \right)} \right]\] và sử dụng công thức tan(a + b) có được ở bài trước

Xem đáp án » 03/08/2023 72

Câu 12:

Tính cos(a + b) bằng cách biến đổi cos(a + b) = \(\sin \left[ {\frac{\pi }{2} - \left( {a + b} \right)} \right] = \sin \left[ {\left( {\frac{\pi }{2} - a} \right) - b} \right]\) và sử dụng công thức cộng đối với sin.

Xem đáp án » 03/08/2023 70

Câu 13:

Cho \(a = \frac{\pi }{6},b = \frac{\pi }{3}\). Hãy tính sina, cosa, sinb, cosb và sin(a + b). Từ đó rút ra đẳng thức sin(a + b) = sina cosb + cosa sinb (*).

Xem đáp án » 03/08/2023 69

Câu 14:

Tính \[\sin \frac{\pi }{{12}}\].

Xem đáp án » 03/08/2023 69

Câu 15:

Tính cos(a ‒ b) bằng cách biến đổi cos(a – b) = cos[a + (‒b)] và sử dụng công thức cos(a + b) có được ở câu a.

Xem đáp án » 03/08/2023 69

Câu hỏi mới nhất

Xem thêm »
Xem thêm »