Thứ năm, 09/01/2025
IMG-LOGO

Câu hỏi:

04/07/2024 49

Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a và \(\widehat {SBA} = \widehat {SCA} = 90^\circ .\) Biết góc giữa SA và mặt đáy bằng \(45^\circ .\) Tính khoảng cách giữa hai đường thẳng SB và AC.

Trả lời:

verified Giải bởi Vietjack

Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a và góc SBA = góc SCA (ảnh 1)

Trong ∆ABC gọi I là trung điểm của BC.

Gọi AH là đường kính đường tròn ngoại tiếp ∆ABC.

Suy ra HB AB, HC AC.

Ta có: \(\left\{ {\begin{array}{*{20}{c}}{BH \bot AB}\\{SB \bot AB}\end{array}} \right.\) AB (SBH) AB SH.

Chứng minh tương tự ta có: AC SH.

Suy ra SH (ABC)

Trong ∆ABC kẻ đường thẳng qua B song song với AC cắt HC tại M.

Ta có: AC // BM d(SB; AC) = d(AC; (SBM)) = d(C; (SBM)).

Ta có CH AC CM BM.

Xét tam giác vuông ACH có: \(CH = AC.\tan 30^\circ = \frac{{a\sqrt 3 }}{3}.\)

Xét tam giác vuông BCM có: \(CM = BC.\cos 30^\circ = \frac{{a\sqrt 3 }}{2}.\)

CH ∩ (SBM) = M \(\frac{{d\left( {H;\left( {SBM} \right)} \right)}}{{d\left( {C;\left( {SBM} \right)} \right)}} = \frac{{HM}}{{CM}} = 1 - \frac{{CH}}{{CM}} = 1 - \frac{{\frac{{a\sqrt 3 }}{3}}}{{\frac{{a\sqrt 3 }}{2}}} = \frac{1}{3}\)

Trong ∆SHM kẻ HK SM (K SM) ta có:

\(\left\{ {\begin{array}{*{20}{c}}{BM \bot HM}\\{BM \bot SH}\end{array}} \right.\) BM (SHM) BM HK

\(\left\{ {\begin{array}{*{20}{c}}{HK \bot BM}\\{HK \bot SM}\end{array}} \right.\) HK (SBM) d(H; (SBM)) = HK

Ta có: \(\left( {\widehat {SA;\left( {ABC} \right)}} \right) = \left( {\widehat {SA;HA}} \right) = \widehat {SAH} = 45^\circ \)

∆SAH vuông cân tại H

\(SH = AH = \frac{{AC}}{{\cos 30^\circ }} = \frac{{2a\sqrt 3 }}{3}\); \(HM = \frac{1}{3}CM = \frac{{a\sqrt 3 }}{6}.\)

Áp dụng hệ thức lượng trong tam giác vuông SHM ta có:

\(HK = \frac{{SH\,.\,HM}}{{\sqrt {S{H^2} + H{M^2}} }} = \frac{{\frac{{2a\sqrt 3 }}{3} \cdot \frac{{a\sqrt 3 }}{6}}}{{\sqrt {\frac{{12{a^2}}}{9} + \frac{{3{a^2}}}{{36}}} }} = \frac{{\frac{{{a^2}}}{3}}}{{\frac{{a\sqrt {51} }}{6}}} = \frac{{2a\sqrt {51} }}{{51}}.\)

Vậy \(d\left( {SB;AC} \right) = \frac{{2a\sqrt {51} }}{{17}}.\)

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác đều ABC tâm O, M là điểm bất kỳ trong tam giác. Hình chiếu của M xuống ba cạnh của tam giác lần lượt là D, E, F. Hệ thức giữa các vectơ \(\overrightarrow {MD} ,\overrightarrow {ME} ,\)\[\overrightarrow {MF} ,\] \(\overrightarrow {MO} \) là gì?

Xem đáp án » 16/08/2023 186

Câu 2:

Gọi S là tập hợp các số tự nhiên có hai chữ số. Chọn ngẫu nhiên đồng thời hai số từ tập hợp S. tính xác suất để hai số được chọn có chữ số hàng đơn vị giống nhau.

Xem đáp án » 16/08/2023 125

Câu 3:

Tìm giá trị nhỏ nhất của hàm số \(y = 3x + \frac{4}{{{x^2}}}\) trên khoảng (0; +∞).

Xem đáp án » 16/08/2023 123

Câu 4:

Từ 1 điểm A nằm ngoài đường tròn (O; R), kẻ 2 tiếp tuyến AB, AC với (O; R) (B và C là 2 tiếp điểm).

a) Chứng minh 4 điểm A, B, O, C cùng thuộc 1 đường tròn và AO BC tại H.

b) Vẽ đường kính BD. Đường thẳng qua O và vuông góc với AD cắt tia BC tại E. Chứng minh: DC // OA.

Xem đáp án » 16/08/2023 101

Câu 5:

Trên một kệ sách có 5 quyển sách Toán, 4 quyển sách Lí, 3 quyển sách Văn. Các quyển sách đều khác nhau. Hỏi có bao nhiêu cách sắp xếp các quyển sách trên:

a) Một cách tuỳ ý?

b) Theo từng môn và sách Toán nằm ở giữa?

Xem đáp án » 16/08/2023 98

Câu 6:

Cho nửa đường tròn (O), đường kính AB. Kẻ 2 tiếp tuyến Ax, By (Ax, By và nửa đường tròn thuộc cùng một mặt phẳng bờ AB). Gọi C là một điểm thuộc tia Ax, kẻ tiếp tuyến CM với nửa đường tròn (M là tiếp điểm). CM cắt By tại D. Gọi I là giao điểm của OC và AM, K là giao điểm của OD và MB.

a) Tính \(\widehat {COD}.\)

b) Tứ giác OIMK là hình gì?

c) Chứng minh AC.BD không đổi khi C di chuyển trên Ax.

d) Chứng minh AB là tiếp tuyến của đường tròn đường kính CD.

Xem đáp án » 16/08/2023 75

Câu 7:

Cho hàm số \(y = \frac{{2x + 1}}{{2x - 1}}\) có đồ thị (C) và đường thẳng d: y = x + 2. Tìm tọa độ giao điểm của đồ thị (C) và đường thẳng d.

Xem đáp án » 16/08/2023 74

Câu 8:

Có bao nhiêu cặp số nguyên (x; y) thỏa mãn 0 ≤ x ≤ 2020 và log3(3x + 3) + x = 2y + 9y?

Xem đáp án » 16/08/2023 73

Câu 9:

Cho phương trình \(\left( {2\log _3^2x - {{\log }_3}x - 1} \right)\sqrt {{5^x} - m} = 0\) (m là tham số thực). Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng hai nghiệm phân biệt?

Xem đáp án » 16/08/2023 73

Câu 10:

Đồ thị hàm số y = ax3 + bx2 + cx + d có hai điểm cực trị là A(1; −7); B(2; −8). Tính y(−1).

Xem đáp án » 16/08/2023 73

Câu 11:

Tìm tọa độ giao điểm của hai đường thẳng y = x + 2 và \(y = - \frac{3}{4}x + 3.\)

Xem đáp án » 16/08/2023 70

Câu 12:

Tìm tất cả các giá trị của tham số m để hàm số y = x3 − mx2 + (2m − 3)x − 3 đạt cực đại tại điểm x = 1.

Xem đáp án » 16/08/2023 69

Câu 13:

Giải phương trình: \(3{\log _3}\left( {1 + \sqrt x + \sqrt[3]{x}} \right) = 2{\log _2}\left( {\sqrt x } \right).\)

Xem đáp án » 16/08/2023 68

Câu 14:

Tìm số giá trị nguyên của m để phương trình: 2(x2 + 2x)2 – (4m – 1)(x2 + 2x) + 2m – 1 = 0 có đúng 3 nghiệm thuộc [−3; 0].

Xem đáp án » 16/08/2023 68

Câu 15:

Trên một kệ sách có 5 quyển sách Toán, 4 quyển sách Lí, 3 quyển sách Văn. Các quyển sách đều khác nhau. Hỏi có bao nhiêu cách sắp xếp các quyển sách trên theo từng môn?

Xem đáp án » 16/08/2023 67

Câu hỏi mới nhất

Xem thêm »
Xem thêm »