Cho hình chóp S.ABCD có ABCD là hình thang, đáy lớn BC với BC = 2a, AD = AB = a, mặt bên (SAD) là tam giác đều. Lấy điểm M trên cạnh AB sao cho MB = 2AM. Mặt phẳng (α) đi qua M và song song với SA, BC. Xác định thiết diện của hình chóp bị cắt bởi mặt phẳng (α) và tính diện tích của thiết diện đó.
+) Dựng thiết diện:
Qua M kẻ MQ song song BC (Q ∈ DC), kẻ MN song song SA (N ∈ SB)
Qua N kẻ NP song song BC (P ∈ SC)
Khi đó, (MNPQ) là mặt phẳng qua M và song song BC, SA
⇒ (MNPQ) ≡ (α)
Thiết diện của hình chóp bị cắt bởi mặt phẳng (α) là tứ giác MNPQ.
+) Tính diện tích thiết diện:
Ta có: NP // MQ (cùng song song BC) ⇒ MNPQ là hình thang
ΔSAD đều ⇒ SA = SD = AD = a
ABCD là hình thang, MQ // BC ⇒ \(\frac{{CQ}}{{DC}} = \frac{{BM}}{{AB}} = \frac{{BN}}{{SB}} = \frac{2}{3}\)
MN // SA ⇒ \(\frac{{MN}}{{SA}} = \frac{{BM}}{{AB}} = \frac{2}{3}\) ⇒ \(MN = \frac{2}{3}SA = \frac{2}{3}a\)
NP // BC ⇒ \(\frac{{NP}}{{BC}} = \frac{1}{3}\) ⇒ \(NP = \frac{1}{3}BC = \frac{2}{3}a\) và \(\frac{{PC}}{{SC}} = \frac{{NB}}{{SB}} = \frac{2}{3}\) ⇒ \(\frac{{PC}}{{SC}} = \frac{{CQ}}{{DC}} = \frac{2}{3}\)
⇒ \(\frac{{PQ}}{{SD}} = \frac{2}{3}\) ⇒ \(PQ = \frac{2}{3}SD = \frac{2}{3}a.\)
Gọi I, J lần lượt là trung điểm của BM và CQ.
Giả sử MQ có độ dài bằng x. Khi đó, do IJ là đường trung bình của hình thang BCQM
⇒ \(IJ = \frac{{MQ + BC}}{2} = \frac{{x + 2a}}{2}\)
Do MQ là đường trung bình của hình thang IJDA ⇒ 2MQ = IJ + AD
⇔ \(2x = \frac{{x + 2a}}{2} + a\) ⇔ 4x = x + 2a + 2a ⇔ \(x = \frac{4}{3}a\)
⇒ \(MQ = \frac{4}{3}a\)
Xét hình thang MNPQ có: NP = MN = PQ = \(\frac{2}{3}a,\) \(MQ = \frac{4}{3}a\) ⇒ MNPQ là hình thang cân.
Kẻ MH, NK vuông góc với PQ (H, K ∈ PQ)
⇒ \(QH = PK = \frac{{PQ - MN}}{2} = \frac{{\frac{4}{3}a - \frac{2}{3}a}}{2} = \frac{a}{3}\)
⇒ \(MH = \sqrt {M{Q^2} - Q{H^2}} = \sqrt {{{\left( {\frac{2}{3}a} \right)}^2} - {{\left( {\frac{1}{3}a} \right)}^2}} = \sqrt {\frac{{{a^2}}}{3}} = \frac{{a\sqrt 3 }}{3}.\)
Diện tích hình thang MNPQ: \(S = \frac{1}{2}\left( {MN + PQ} \right).MH = \frac{1}{2}.\left( {\frac{2}{3}a + \frac{4}{3}a} \right).\frac{{a\sqrt 3 }}{3} = \frac{{{a^2}\sqrt 3 }}{3}.\)
Cho tam giác đều ABC tâm O, M là điểm bất kỳ trong tam giác. Hình chiếu của M xuống ba cạnh của tam giác lần lượt là D, E, F. Hệ thức giữa các vectơ \(\overrightarrow {MD} ,\overrightarrow {ME} ,\)\[\overrightarrow {MF} ,\] \(\overrightarrow {MO} \) là gì?
Tìm giá trị nhỏ nhất của hàm số \(y = 3x + \frac{4}{{{x^2}}}\) trên khoảng (0; +∞).
Từ 1 điểm A nằm ngoài đường tròn (O; R), kẻ 2 tiếp tuyến AB, AC với (O; R) (B và C là 2 tiếp điểm).
a) Chứng minh 4 điểm A, B, O, C cùng thuộc 1 đường tròn và AO ⊥ BC tại H.
b) Vẽ đường kính BD. Đường thẳng qua O và vuông góc với AD cắt tia BC tại E. Chứng minh: DC // OA.
Trên một kệ sách có 5 quyển sách Toán, 4 quyển sách Lí, 3 quyển sách Văn. Các quyển sách đều khác nhau. Hỏi có bao nhiêu cách sắp xếp các quyển sách trên:
a) Một cách tuỳ ý?
b) Theo từng môn và sách Toán nằm ở giữa?
Có bao nhiêu cặp số nguyên (x; y) thỏa mãn 0 ≤ x ≤ 2020 và log3(3x + 3) + x = 2y + 9y?
Cho nửa đường tròn (O), đường kính AB. Kẻ 2 tiếp tuyến Ax, By (Ax, By và nửa đường tròn thuộc cùng một mặt phẳng bờ AB). Gọi C là một điểm thuộc tia Ax, kẻ tiếp tuyến CM với nửa đường tròn (M là tiếp điểm). CM cắt By tại D. Gọi I là giao điểm của OC và AM, K là giao điểm của OD và MB.
a) Tính \(\widehat {COD}.\)
b) Tứ giác OIMK là hình gì?
c) Chứng minh AC.BD không đổi khi C di chuyển trên Ax.
d) Chứng minh AB là tiếp tuyến của đường tròn đường kính CD.
Cho phương trình \(\left( {2\log _3^2x - {{\log }_3}x - 1} \right)\sqrt {{5^x} - m} = 0\) (m là tham số thực). Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng hai nghiệm phân biệt?
Cho hàm số \(y = \frac{{2x + 1}}{{2x - 1}}\) có đồ thị (C) và đường thẳng d: y = x + 2. Tìm tọa độ giao điểm của đồ thị (C) và đường thẳng d.
Đồ thị hàm số y = ax3 + bx2 + cx + d có hai điểm cực trị là A(1; −7); B(2; −8). Tính y(−1).
Tìm tọa độ giao điểm của hai đường thẳng y = x + 2 và \(y = - \frac{3}{4}x + 3.\)
Tìm tất cả các giá trị của tham số m để hàm số y = x3 − mx2 + (2m − 3)x − 3 đạt cực đại tại điểm x = 1.
Giải phương trình: \(3{\log _3}\left( {1 + \sqrt x + \sqrt[3]{x}} \right) = 2{\log _2}\left( {\sqrt x } \right).\)
Tìm số giá trị nguyên của m để phương trình: 2(x2 + 2x)2 – (4m – 1)(x2 + 2x) + 2m – 1 = 0 có đúng 3 nghiệm thuộc [−3; 0].
Trên một kệ sách có 5 quyển sách Toán, 4 quyển sách Lí, 3 quyển sách Văn. Các quyển sách đều khác nhau. Hỏi có bao nhiêu cách sắp xếp các quyển sách trên theo từng môn?