Cho hình vẽ, có \(\widehat {BAC}\) = 50°, \(\widehat {ABC}\) = 65°, Ax // BC.
a) Tính số đo \(\widehat {ACB}\).
b) Tính số đo \(\widehat {yAx}\) rồi chứng minh Ax là tia phân giác của \(\widehat {yAC}\).
c) Vẽ tia Az là tia đối của tia Ax, tia Am là tia phân giác của zAB, tia Bn là tia phân giác của \(\widehat {ABC}\). Chứng minh Am // Bn.
a) Xét tam giác ABC có:
\(\widehat {BAC} + \widehat {ABC} + \widehat {ACB}\) = 180°
⇔ 50° + 65° + \(\widehat {ACB}\)= 180°
⇔ \(\widehat {ACB}\)= 65°
b) Do Ax // BC nên \(\widehat {ACB} = \widehat {CAx} = 65^\circ \)(so le trong)
Suy ra: \(\widehat {BAx} = 50^\circ + 65^\circ = 115^\circ \)
Ta có: \(\widehat {BAx} + \widehat {yAx} = 180^\circ \)
⇔ \(\widehat {yAx} = 180^\circ - 115^\circ = 65^\circ \)
Suy ra: \(\widehat {yAx} = \widehat {CAx} = 65^\circ \)nên Ax là tia phân giác \(\widehat {yAC}\)
c) Do Az là tia đối của Ax nên \(\widehat {xAz} = 180^\circ \)
Lại có: \(\widehat {xAz} = \widehat {BAx} + \widehat {BAz}\)
Suy ra: \(\widehat {BAz} = 180^\circ - 115^\circ = 65^\circ \)
Do Am là phân giác của \(\widehat {BAz}\)
nên \[\widehat {BAm} = \frac{1}{2}\widehat {BAz} = \frac{1}{2}.65^\circ = 32,5^\circ \]
Mặt khác: Bn là phân giác của \(\widehat {ABC}\)
nên \[\widehat {ABn} = \frac{1}{2}\widehat {ABC} = \frac{1}{2}.65^\circ = 32,5^\circ \]
Do đó: \[\widehat {BAm} = \widehat {ABn}\]mà 2 góc này ở vị trí so le trong
Nên Am // Bn.
Hai bạn An và Hưng cùng xuất phát từ điểm P, đi theo hai hướng khác nhau và tạo với nhau một góc 40)° để đến đích là điểm D. Biết rằng họ dừng lại để ăn trưa lần lượt tại A và B (như hình vẽ minh hoạ). Hỏi Hưng phải đi bao xa nữa để đến được đích?
Cho mặt cầu S(O; R) và một điểm A, biết OA = 2R. Qua A kẻ cát tuyến cắt (S) tại B và C sao cho BC = \(R\sqrt 3 \). Tính khoảng cách từ O đến BC.
Cho tam giác ABC có AB = AC. Gọi I là trung điểm của BC, trên tia đối của tia IA lấy điểm D sao cho ID = IA.
a) Chứng minh ∆ABI = ∆ACI.
b) Chứng minh AC // BD.
c) Kẻ IK vuông góc với AB (K thuộc AB), IH vuông góc với CD (H thuộc CD). Chứng minh IK = IH.
Cho hình chữ nhật ABCD có AB = 3cm; BC = 5cm. Tính độ dài véctơ \(\overrightarrow {AC} \)?
Trong mặt phẳng với hệ trục tọa độ Oxy cho tam giác ABC có A(–1;1), B(1;3) và trọng tân là G\(\left( { - 2;\frac{2}{3}} \right)\). Tìm tọa độ điểm M trên tia Oy sao cho tam giác MBC vuông tại M.
Cho điểm A nằm ngoài đường tròn (O; R). Vẽ hai tiếp tuyến AB, AC với đường tròn (O) (B, C là các tiếp điểm). Vẽ đường kính CD của đường tròn (O).
a) Chứng minh rằng: OA vuông góc BC và OA // BD.
b) Gọi E là giao điểm của AD và đường tròn (O) (E khác D), H là giao điểm của OA và BC. Chứng minh rằng: AE. AD = AH. AO.
Cho tam giác ABC vuông tại A. Gọi M là trung điểm của AC , trên tia đối của tia MB lấy điểm D sao cho MD =MB.
1) Chứng minh AD = BC.
2) Chứng minh CD vuông góc với AC.
3) Đường thẳng qua B song song với AC cắt tia DC tại N. Chứng minh tam giác ABM = tam giác CNM.
Cho tam giác ABC vuông tại A. Gọi M là trung điểm của cạnh BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA.
a) Chứng minh: ∆MAB = ∆MDC.
b) Chứng minh: AB // CD và ∆ABC = ∆CDA.
c) Chứng minh: ∆BDC là tam giác vuông.
Cho tam giác ABC có AB = AC. Lấy hai điểm D, E thuộc cạnh BC sao cho BD = DE = EC. Biết AD = AE.
a) Chứng minh \(\widehat {EAB}\) = \(\widehat {DAC}\).
b) Gọi M là trung điểm của BC. Chứng minh AM là phân giác của góc \(\widehat {DAE}\).
c) Gỉa sử \(\widehat {DAE} = 60^\circ \). Tính các góc còn lại của tam giác ADE.
Tính diện tích hình thang có đáy lớn 54m, đáy bé bằng \(\frac{2}{3}\) đáy lớn và bằng \(\frac{3}{2}\) chiều cao.
Cho tam giác ABC vuông cân tại C, M là điểm bất kỳ trên cạnh AB. Vẽ MF vuông góc BC tại F, ME vuông góc AC tại E. Gọi D là trung điểm AB. Chứng minh rằng tam giác DEF vuông cân.
Tính bằng cách thuận tiện: \(\frac{1}{4}:0,25 - \frac{1}{8}:0,125 + \frac{1}{2}:0,5 - \frac{1}{{10}}\).
Một cửa hàng có 3,125 tấn gạo. Ngày thứ nhất bán được 24%số gạo. Ngày thứ hai bán được 32% số gạo còn lại. Hỏi ngày thứ hai cửa hàng bán được bao nhiêu ki lô gam gạo?
Cho đường tròn tâm (O) bán kính OA = 3cm. Dây BC của đường tròn vuông góc với OA tại trung điểm của OA. Tính độ dài BC.