IMG-LOGO

Câu hỏi:

14/07/2024 60

Cho đường tròn (O; R). Từ một điểm M nằm ngoài đường tròn kẻ các tiếp tuyến ME, MF đến đường tròn với (E; F là tiếp điểm). Đoạn OM cắt đường tròn (O; R) tại I. Kẻ đường kính ED của (O; R). Hạ FK vuông góc với ED. Gọi P là giao điểm của MD và FK. Chọn câu đúng:


A. Các điểm M, E, O, F cùng thuộc một đường tròn.



B. Điểm I là tâm đường tròn nội tiếp tam giác MEF.



C. Điểm I là tâm đường tròn ngoại tiếp tam giác MEF.



D. Cả A, B đều đúng.


Đáp án chính xác

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng: D

Cho đường tròn (O; R). Từ một điểm M nằm ngoài đường tròn kẻ các tiếp tuyến ME (ảnh 1)

* Vì ME là tiếp tuyến của (O) nên ME vuông góc với OE, suy ra tam giác MOE nội tiếp đường tròn đường kính MO (1)

Vì MF là tiếp tuyến của (O) nên MF vuông góc với OF, suy ra tam giác MOF nội tiếp đường tròn đường kính MO (1)

Từ (1) và (2) suy ra M, E, O, F cùng thuộc một đường tròn nên A đúng

* Gọi MO ∩ EF = {H}

Vì M là giao điểm của hai tiếp tuyến ME và MF của (O)

 ME = MF (tính chất) mà OE = OF = R (gt)

MO là đường trung trực của EF

 MO  EF \(\widehat {IFE} + \widehat {OIF} = 90^\circ \)

Vì OI = OF = R nên tam giác OIF cân tại O

\(\widehat {OIF} = \widehat {OFI}\)\(\widehat {MFI} + \widehat {OFI} = 90^\circ ;\widehat {IFE} + \widehat {OIF} = 90^\circ \)

 \(\widehat {MFI} = \widehat {IFE}\)

 FI là phân giác của \(\widehat {MFE}\)(1)

Vì M là giao điểm của hai tiếp tuyến ME và MF của (O)

MI là phân giác của \(\widehat {EMF}\) (tính chất) (2)

Từ (1) và (2)  I là tâm đường tròn nội tiếp tam giác MEF.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hai bạn An và Hưng cùng xuất phát từ điểm P, đi theo hai hướng khác nhau và tạo với nhau một góc 40)° để đến đích là điểm D. Biết rằng họ dừng lại để ăn trưa lần lượt tại A và B (như hình vẽ minh hoạ). Hỏi Hưng phải đi bao xa nữa để đến được đích?

Hai bạn An và Hưng cùng xuất phát từ điểm P, đi theo hai hướng khác nhau và tạo với (ảnh 1)

Xem đáp án » 16/08/2023 3,026

Câu 2:

Tìm số tự nhiên n để 3n + 16 chia hết cho n + 4.

Xem đáp án » 16/08/2023 208

Câu 3:

Cho mặt cầu S(O; R) và một điểm A, biết OA = 2R. Qua A kẻ cát tuyến cắt (S) tại B và C sao cho BC = \(R\sqrt 3 \). Tính khoảng cách từ O đến BC.

Xem đáp án » 16/08/2023 204

Câu 4:

Cho tam giác ABC có AB = AC. Gọi I là trung điểm của BC, trên tia đối của tia IA lấy điểm D sao cho ID = IA.

a) Chứng minh ∆ABI = ∆ACI.

b) Chứng minh AC // BD.

c) Kẻ IK vuông góc với AB (K thuộc AB), IH vuông góc với CD (H thuộc CD). Chứng minh IK = IH.

Xem đáp án » 16/08/2023 188

Câu 5:

Cho hình chữ nhật ABCD có AB = 3cm; BC = 5cm. Tính độ dài véctơ \(\overrightarrow {AC} \)?

Xem đáp án » 16/08/2023 178

Câu 6:

Trong mặt phẳng với hệ trục tọa độ Oxy cho tam giác ABC có A(–1;1), B(1;3) và trọng tân là G\(\left( { - 2;\frac{2}{3}} \right)\). Tìm tọa độ điểm M trên tia Oy sao cho tam giác MBC vuông tại M.

Xem đáp án » 16/08/2023 148

Câu 7:

Cho điểm A nằm ngoài đường tròn (O; R). Vẽ hai tiếp tuyến AB, AC với đường tròn (O) (B, C là các tiếp điểm). Vẽ đường kính CD của đường tròn (O).

a) Chứng minh rằng: OA vuông góc BC và OA // BD.

b) Gọi E là giao điểm của AD và đường tròn (O) (E khác D), H là giao điểm của OA và BC. Chứng minh rằng: AE. AD = AH. AO.

Xem đáp án » 16/08/2023 146

Câu 8:

Cho tam giác ABC có AB = AC. Lấy hai điểm D, E thuộc cạnh BC sao cho BD = DE = EC. Biết AD = AE.

a) Chứng minh \(\widehat {EAB}\) = \(\widehat {DAC}\).

b) Gọi M là trung điểm của BC. Chứng minh AM là phân giác của góc \(\widehat {DAE}\).

c) Gỉa sử \(\widehat {DAE} = 60^\circ \). Tính các góc còn lại của tam giác ADE.

Xem đáp án » 16/08/2023 137

Câu 9:

Cho tam giác ABC vuông tại A. Gọi M là trung điểm của cạnh BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA.

a) Chứng minh: ∆MAB = ∆MDC.

b) Chứng minh: AB // CD và ∆ABC = ∆CDA.

c) Chứng minh: ∆BDC là tam giác vuông.

Xem đáp án » 16/08/2023 136

Câu 10:

Cho tam giác ABC vuông tại A. Gọi M là trung điểm của AC , trên tia đối của tia MB lấy điểm D sao cho MD =MB.

1) Chứng minh AD = BC.

2) Chứng minh CD vuông góc với AC.

3) Đường thẳng qua B song song với AC cắt tia DC tại N. Chứng minh tam giác ABM = tam giác CNM.

Xem đáp án » 16/08/2023 130

Câu 11:

Tính diện tích hình thang có đáy lớn 54m, đáy bé bằng \(\frac{2}{3}\) đáy lớn và bằng \(\frac{3}{2}\) chiều cao.

Xem đáp án » 16/08/2023 130

Câu 12:

Cho tam giác ABC vuông cân tại C, M là điểm bất kỳ trên cạnh AB. Vẽ MF vuông góc BC tại F, ME vuông góc AC tại E. Gọi D là trung điểm AB. Chứng minh rằng tam giác DEF vuông cân. 

Xem đáp án » 16/08/2023 125

Câu 13:

Cho đường tròn tâm (O) bán kính OA = 3cm. Dây BC của đường tròn vuông góc với OA tại trung điểm của OA. Tính độ dài BC.

Xem đáp án » 16/08/2023 115

Câu 14:

Một cửa hàng có 3,125 tấn gạo. Ngày thứ nhất bán được 24%số gạo. Ngày thứ hai bán được 32% số gạo còn lại. Hỏi ngày thứ hai cửa hàng bán được bao nhiêu ki lô gam gạo?

Xem đáp án » 16/08/2023 114

Câu 15:

Tính bằng cách thuận tiện: \(\frac{1}{4}:0,25 - \frac{1}{8}:0,125 + \frac{1}{2}:0,5 - \frac{1}{{10}}\).

Xem đáp án » 16/08/2023 112

Câu hỏi mới nhất

Xem thêm »
Xem thêm »