Tìm các số x , y , z biết \(\frac{{x - 1}}{2} = \frac{{y - 2}}{3} = \frac{{z - 3}}{4}\) và 2x + 3y – z = 45.
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{{x - 1}}{2} = \frac{{y - 2}}{3} = \frac{{z - 3}}{4}\)
⇔ \(\frac{{2\left( {x - 1} \right)}}{4} = \frac{{3\left( {y - 2} \right)}}{9} = \frac{{z - 3}}{4} = \frac{{2x + 3y - z - 5}}{{4 + 9 + 4}} = \frac{{45 - 5}}{9} = \frac{{40}}{9}\)
Do đó: \(\frac{{x - 1}}{2} = \frac{{40}}{9}\) ⇒ x = \(\frac{{80}}{9} + 1 = \frac{{89}}{9}\)
\(\frac{{y - 2}}{3} = \frac{{40}}{9}\)⇒ y = \(\frac{{40}}{9}.3 + 2 = \frac{{46}}{3}\)
\(\frac{{z - 3}}{4} = \frac{{40}}{9}\)⇒ z = \(\frac{{40}}{9}.4 + 3 = \frac{{187}}{9}\).
Hai bạn An và Hưng cùng xuất phát từ điểm P, đi theo hai hướng khác nhau và tạo với nhau một góc 40)° để đến đích là điểm D. Biết rằng họ dừng lại để ăn trưa lần lượt tại A và B (như hình vẽ minh hoạ). Hỏi Hưng phải đi bao xa nữa để đến được đích?
Cho mặt cầu S(O; R) và một điểm A, biết OA = 2R. Qua A kẻ cát tuyến cắt (S) tại B và C sao cho BC = \(R\sqrt 3 \). Tính khoảng cách từ O đến BC.
Cho tam giác ABC có AB = AC. Gọi I là trung điểm của BC, trên tia đối của tia IA lấy điểm D sao cho ID = IA.
a) Chứng minh ∆ABI = ∆ACI.
b) Chứng minh AC // BD.
c) Kẻ IK vuông góc với AB (K thuộc AB), IH vuông góc với CD (H thuộc CD). Chứng minh IK = IH.
Cho hình chữ nhật ABCD có AB = 3cm; BC = 5cm. Tính độ dài véctơ \(\overrightarrow {AC} \)?
Trong mặt phẳng với hệ trục tọa độ Oxy cho tam giác ABC có A(–1;1), B(1;3) và trọng tân là G\(\left( { - 2;\frac{2}{3}} \right)\). Tìm tọa độ điểm M trên tia Oy sao cho tam giác MBC vuông tại M.
Cho điểm A nằm ngoài đường tròn (O; R). Vẽ hai tiếp tuyến AB, AC với đường tròn (O) (B, C là các tiếp điểm). Vẽ đường kính CD của đường tròn (O).
a) Chứng minh rằng: OA vuông góc BC và OA // BD.
b) Gọi E là giao điểm của AD và đường tròn (O) (E khác D), H là giao điểm của OA và BC. Chứng minh rằng: AE. AD = AH. AO.
Cho tam giác ABC vuông tại A. Gọi M là trung điểm của AC , trên tia đối của tia MB lấy điểm D sao cho MD =MB.
1) Chứng minh AD = BC.
2) Chứng minh CD vuông góc với AC.
3) Đường thẳng qua B song song với AC cắt tia DC tại N. Chứng minh tam giác ABM = tam giác CNM.
Cho tam giác ABC vuông tại A. Gọi M là trung điểm của cạnh BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA.
a) Chứng minh: ∆MAB = ∆MDC.
b) Chứng minh: AB // CD và ∆ABC = ∆CDA.
c) Chứng minh: ∆BDC là tam giác vuông.
Cho tam giác ABC có AB = AC. Lấy hai điểm D, E thuộc cạnh BC sao cho BD = DE = EC. Biết AD = AE.
a) Chứng minh \(\widehat {EAB}\) = \(\widehat {DAC}\).
b) Gọi M là trung điểm của BC. Chứng minh AM là phân giác của góc \(\widehat {DAE}\).
c) Gỉa sử \(\widehat {DAE} = 60^\circ \). Tính các góc còn lại của tam giác ADE.
Tính diện tích hình thang có đáy lớn 54m, đáy bé bằng \(\frac{2}{3}\) đáy lớn và bằng \(\frac{3}{2}\) chiều cao.
Cho tam giác ABC vuông cân tại C, M là điểm bất kỳ trên cạnh AB. Vẽ MF vuông góc BC tại F, ME vuông góc AC tại E. Gọi D là trung điểm AB. Chứng minh rằng tam giác DEF vuông cân.
Tính bằng cách thuận tiện: \(\frac{1}{4}:0,25 - \frac{1}{8}:0,125 + \frac{1}{2}:0,5 - \frac{1}{{10}}\).
Một cửa hàng có 3,125 tấn gạo. Ngày thứ nhất bán được 24%số gạo. Ngày thứ hai bán được 32% số gạo còn lại. Hỏi ngày thứ hai cửa hàng bán được bao nhiêu ki lô gam gạo?
Cho đường tròn tâm (O) bán kính OA = 3cm. Dây BC của đường tròn vuông góc với OA tại trung điểm của OA. Tính độ dài BC.