Cho khối chóp S.ABC có đáy ABC là tam giác cân tại A, AB = 2a, \(\widehat {BAC} = 120^\circ ,\;\widehat {SBA} = \widehat {SCA} = 90^\circ \). Biết góc giữa SB và đáy bằng 60°. Tính thể tích V của khối chóp S.ABC.
Gọi M, N lần lượt là trung điểm của SA, BC.
Ta có: ∆SAB, ∆SAC lần lượt vuông tại B, C nên:
\(BM = CM = \frac{1}{2}SA = MS = MA\)
Suy ra hình chóp M.ABC có MA = MB = MC nên hình chiếu của M lên mặt phẳng (ABC) trùng với tâm đường tròn ngoại tiếp tam giác ABC.
Dựng hình bình hành ABIC ta có: IB = AC = 2a, IC = AB = 2a
Tam giác ABC cân tại A nên AN ^ BC (trung tuyến đồng thời là đường cao) và \(\widehat {BAN} = 60^\circ \) (trung tuyến đồng thời là đường phân giác).
• Xét tam giác vuông ABC có AN = AB.cos 60° = a
Þ AI = 2AN = 2a
Do đó IA = IB = IC = 2a nên I là tâm đường tròn ngoại tiếp ∆ABC
Þ MI ^ (ABC)
Trong mặt phẳng (AMI) có SH // MI (H Î AI) và SH ^ (ABC)
Suy ra HB là hình chiếu của SB lên (ABC)
Do đó \(\left( {\widehat {SB;\;\left( {ABC} \right)}} \right) = \left( {\widehat {SB;\;HB}} \right) = \widehat {SBH} = 60^\circ \)
• Xét tam giác SAH có M là trung điểm của SA, SH // MI nên I là trung điểm của AH (Định lí đường trung bình)
Þ AH = 2AI = 4a
Áp dụng định lí Cosin trong tam giác ABH ta có:
BH2 = AB2 + AH2 − 2AB.AH.cos 60°
\( = {\left( {2a} \right)^2} + {\left( {4a} \right)^2} - 2\,.\,2a\,.\,4a\,.\,\frac{1}{2} = 12{a^2}\)
\( \Rightarrow BH = 2a\sqrt 3 \)
• Xét tam giác vuông SBH có: SH = BH.tan 60° = 6a
\({S_{\Delta ABC}} = \frac{1}{2}AB\,.\,AC\,.\,\sin \widehat {BAC} = \frac{1}{2}2a\,.\,2a\,.\,\sin 120^\circ = {a^2}\sqrt 3 \)
Vậy \({V_{S.ABC}} = \frac{1}{3}SH\,.\,{S_{\Delta ABC}} = \frac{1}{3}\,.\,6a\,.\,{a^2}\sqrt 3 = 2{a^3}\sqrt 3 \).
Cho hàm số: y = 3 − 5sin x, giá trị lớn nhất và nhỏ nhất của hàm số là M và m. Tính \(\frac{M}{m}\).
Cho y = 2x + m + 1. Tìm m để đồ thị hàm số cắt trục tung tại điểm có tung độ bằng 2.
Tìm m để y = x3 − 3x2 + mx − 1 có hai điểm cực trị x1, x2 thỏa mãn x12 + x22 = 3.
Cho hai đường thẳng song song d1 và d2. Trên d1 lấy 17 điểm phân biệt, trên d2 lấy 20 điểm phân biệt. Tính số tam giác mà có các đỉnh được chọn từ 37 điểm này.
Cho tam giác ABC nội tiếp đường tròn (O), các đường cao AD, BE, CF cắt nhau tại H. Đường thẳng EF cắt đường tròn (O) tại M, N (F nằm giữa M và E). Chứng minh rằng: .
Tìm GTLN và GTNN của hàm số sau: \(y = 1 - \sqrt {2{{\cos }^2}x + 1} \).
Cho hình chóp tam giác S.ABC với SA, SB, SC đôi một vuông góc và SA = SB = SC = a. Tính thể tích của khối chóp S.ABC.
Cho đường tròn (O; R). Có bao nhiêu phép vị tự biến (O; R) thành chính nó?
Tìm tất cả các giá trị của tham số m để hàm số y = −x3 + 3x2 + mx + 1 nghịch biến trên khoảng (0; +∞).
Cho hình lập phương ABCD có cạnh là 2. Gọi M, N lần lượt là trung điểm của BC và CD. Tính diện tích thiết diện của hình lập phương khi cắt bởi mặt phẳng (A'MN).
Có bao nhiêu giá trị nguyên của m để phương trình 22x + 1 − 2x + 3 − 2m = 0 có hai nghiệm phân biệt?
Cho ba điểm A(2; 2), B(3; 5), C(5; 5). Tìm tọa độ điểm D sao cho ABCD là một hình bình hành.
Cho hàm số y = 3x + 2 có đồ thị là đường thẳng (d1).
1. Điểm \(A\left( {\frac{1}{3};\;3} \right)\) có thuộc đường thẳng (d1) không? Vì sao?
2. Tìm giá trị của m để đường thẳng (d1) và đường thẳng (d2) có phương trình y = −2x + m cắt nhau tại điểm có hoành độ bằng 1.
3. Tìm giá trị của tham số m để đường thẳng y = −2x + m cắt hai trục tạo thành tam giác có diện tích bằng 5.
Cho tam giác nhọn ABC nội tiếp đường tròn (O), các đường cao AD, BE, CF cắt nhau tại H (D Î BC, E Î AC, F Î AB). Chứng minh các tứ giác BDHF, BFEC nội tiếp.