Cho hàm số y = log2x2. Khẳng định nào sau đây là sai?
A. Hàm số đồng biến trên (0; +∞);
B. Hàm số nghịch biến trên (−∞; 0);
C. Đồ thị hàm số có một tiệm cận ngang;
D. Đồ thị hàm số có một đường tiệm cận đứng.
Đáp án đúng là: C
TXĐ: D = ℝ \ {0}
Ta có: y = log2x2
\( \Rightarrow y' = \frac{{{{\left( {{x^2}} \right)}^\prime }}}{{{x^2}\ln 2}} = \frac{{2x}}{{{x^2}\ln 2}}\)
Ta thấy y’ > 0 ⇔ x > 0 nên hàm số đồng biến trên (0; +∞)
y’ < 0 ⇔ x < 0 nên hàm số nghịch biến trên (−∞; 0)
Lại có: \(\mathop {\lim }\limits_{x \to \, \pm \,\infty } y = + \infty \) nên hàm số đã cho không có tiệm cận ngang
Đồ thị hàm số có một tiệm cận đúng là x = 0.
Vậy đáp án C là khẳng định sai.
Cho tứ giác ABCD có a là góc nhọn tạo bởi hai đường chéo. Chứng minh rằng \({S_{ABCD}} = \frac{1}{2}.AC.BD.\sin a\).
Giá trị nhỏ nhất của hàm số y = x3 + 2x2 – 7x trên đoạn [0; 4] bằng
Quãng đường AB gồm một đoạn lên dốc dài 4 km và một đoạn xuống dốc dài 5 km. Một người đi xe đạp từ A đến B hết 40 phút và đi từ B về A hết 41 phút (vận tốc lên dốc, xuống dốc lúc đi và về như nhau). Tính vận tốc lúc lên dốc và lúc xuống dốc.
Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, \(\widehat {ABC} = 120^\circ \); ∆SAB đều và nằm trong mặt phẳng vuôn góc với mặt đáy. Bán kính mặt cầu ngoại tiếp hình chóp S.ABC bằng
Tập nghiệm của phương trình \({5^x}{.8^{\frac{{x - 1}}{x}}} = 500\) là
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a và chiều cao bằng 2a. Diện tích xung quanh của hình nón đỉnh S và đáy là hình tròn nội tiếp ABCD là:
Tìm một số tự nhiên có hai chữ số,biết rằng nếu viết thêm chữ số 6 vào bên trái số đó ta được một số lớn gấp 13 lần số đã cho.
Thể tích khối lăng trụ tam giác đều có cạnh đáy bằng a và cạnh bên bằng 2a bằng:
Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AB = a, BC = b, CC’ = c. Độ dài đường chéo AC’ là:
Tìm tất cả các giá trị thực của tham số m để phương trình mx – m = 0 vô nghiệm.