Với các chữ số 2, 3, 4, 5, 6, có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau trong đó hai chữ số 2, 3 không đứng cạnh nhau?
Ta có: n (W) = 5!
Gọi là biến cố “Số 2 và 3 đứng cạnh nhau”
+ TH1: có 3! (cách)
+ TH2: có 3! (cách)
+ TH3: có 3! (cách)
+ TH4: có 3! (cách)
Mà 2 và 3 có thể đổi chỗ cho nhau nên:
Do đó .
Vậy lập được 72 số tự nhiên gồm 5 chữ số khác nhau trong đó hai chữ số 2, 3 không đứng cạnh nhau.
Cho khối chóp đều S.ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45°. Tính thể tích của khối chóp S.ABC theo a.
Cho tam giác ABC. Hãy xác định các điểm I, J, K, L thoả các đẳng thức sau:
a)
b)
c)
d)
Sắp xếp 6 nam sinh và 4 nữ sinh vào một dãy ghế hàng ngang có 10 chỗ ngồi. Tính số cách xếp sao cho các nữ sinh luôn ngồi cạnh nhau.
Cho hình chóp S.ABCD, gọi M là trung điểm SB và N là điểm thuộc cạnh SC sao cho SN = 2NC. Tính tỉ số .
Cho tứ giác ABCD. Gọi M, N lần lượt là trung điểm của AD, BC
a) Chứng minh:
b) Xác định điểm O sao cho .
Trong mặt phẳng Oxy, cho tam giác ABC có đường cao AH, trung tuyến CM và phân giác trong BD có phương trình x + y − 5 = 0, biết H(−4; 1), . Tọa độ đỉnh A là:
Cho hình lập phương ABCD.A'B'C'D'. Tính góc giữa các cặp đường thẳng sau đây:
a) AB và B'C'
b) AC và B'C'
c) A'C' và B'C
Cho ∆ABC. Hãy xác định các điểm I, J, K, L thoả các đẳng thức sau:
a)
b)
c)
d)
Cho hình thang ABCD có hai đáy AB và CD với AB = 2CD. Từ C vẽ .
a) Chứng minh I là trung điểm AB và ;
b) Chứng minh .
Cho hình chữ nhật ABCD, AB = 3, AD = 4. Hãy tính độ lớn của
a)
b)