Tìm giá trị thực của tham số m để đường thẳng d: y = (3m + 1)x + 3 + m vuông góc với đường thẳng đi qua hai điểm cực trị của đồ thị hàm số y = x3 − 3x2 − 1.
TXĐ: D = ℝ
Ta có:
Suy ra A(0; 1) và B(2; −3) là hai điểm cực trị của đồ thị hàm số đã cho.
Phương trình đường thẳng đi qua hai điểm cực trị là:
Û −2x = y − 1
Û y = −2x + 1 (d')
Vì d ^ d' Þ (3m + 1).(−2) = −1
.
Vậy .
Cho tam giác ABC. Hãy xác định các điểm I, J, K, L thoả các đẳng thức sau:
a)
b)
c)
d)
Cho khối chóp đều S.ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45°. Tính thể tích của khối chóp S.ABC theo a.
Sắp xếp 6 nam sinh và 4 nữ sinh vào một dãy ghế hàng ngang có 10 chỗ ngồi. Tính số cách xếp sao cho các nữ sinh luôn ngồi cạnh nhau.
Cho hình chóp S.ABCD, gọi M là trung điểm SB và N là điểm thuộc cạnh SC sao cho SN = 2NC. Tính tỉ số .
Cho tứ giác ABCD. Gọi M, N lần lượt là trung điểm của AD, BC
a) Chứng minh:
b) Xác định điểm O sao cho .
Cho hình lập phương ABCD.A'B'C'D'. Tính góc giữa các cặp đường thẳng sau đây:
a) AB và B'C'
b) AC và B'C'
c) A'C' và B'C
Trong mặt phẳng Oxy, cho tam giác ABC có đường cao AH, trung tuyến CM và phân giác trong BD có phương trình x + y − 5 = 0, biết H(−4; 1), . Tọa độ đỉnh A là:
Cho ∆ABC. Hãy xác định các điểm I, J, K, L thoả các đẳng thức sau:
a)
b)
c)
d)
Cho hình thang ABCD có hai đáy AB và CD với AB = 2CD. Từ C vẽ .
a) Chứng minh I là trung điểm AB và ;
b) Chứng minh .
Cho hình chữ nhật ABCD, AB = 3, AD = 4. Hãy tính độ lớn của
a)
b)