Thứ sáu, 22/11/2024
IMG-LOGO

Câu hỏi:

22/07/2024 44

Một xưởng sản xuất hai loại sản phẩm, mỗi kg sản phẩm loại I cần 2kg nguyên liệu và 30 giờ, đem lại mức lời 40000 đồng. Mỗi kg sản phẩm loại II cần 4kg nguyên liệu và 15giờ, đem lại mức lời 30000 đồng. Xưởng có 200kg nguyên liệu và 1200 giờ làm việc. Nên sản xuất mỗi loại sản phẩm lần lượt là bao nhiêu để có mức lời cao nhất?

Trả lời:

verified Giải bởi Vietjack

Gọi x (x ≥ 0)  là số kg loại I cần sản xuất, y (y ≥ 0) là số kg loại II cần sản xuất.

Suy ra số nguyên liệu cần dùng là 2x + 4y, thời gian là 30x + 15y có mức lời là 40 000x + 30 000y

Theo giả thiết bài toán xưởng có 200kg nguyên liệu và 1200 giờ làm việc suy ra

2x + 4y ≤  200 hay x + 2y – 100 ≤  0 ; 30x + 15y ≤ 1200 hay 2x+ y – 80 ≤ 0

Tìm x; y thoả mãn hệ x+2y10002x+y800x0y0  (*)

sao cho L(x; y) = 40 000x + 30 000y đạt giá trị lớn nhất.

Trong mặt phẳng tọa độ vẽ các đường thẳng (d): x + 2y – 100= 0 và (d’) : 2x + y – 80 = 0

Media VietJack

Khi đó miền nghiệm của hệ bất phương trình (*) là phần mặt phẳng(tứ giác) không tô màu trên hình vẽ

Giá trị lớn nhất của L( x; y)  đạt tại một trong các điểm (0; 0) ; (40; 0) ; (0; 50) ; (20; 40)

+ Ta có L(0; 0) = 0; L( 40; 0) = 1 600 000;

L(0; 50) = 1 500 000; L(20; 40) =  2 000 000

Suy ra giá trị lớn nhất của L(x; y)  là 2 000 000 khi (x; y) = (20; 40).

Vậy cần sản xuất 20 kg sản phẩm loại I và 40 kg sản phẩm loại II để có mức lời lớn nhất.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong một lớp học có 6 bóng đèn, mỗi bóng đèn có xác suất bị cháy là 14 . Lớp học đủ ánh sáng nếu có 4 bóng đèn hoạt động. Tính xác suất để lớp học đủ ánh sáng.

Xem đáp án » 27/08/2023 583

Câu 2:

Một quả bóng cầu thủ sút lên rồi rơi xuống theo quỹ đạo là parabol. Biết rằng ban đầu quả bóng được sút lên từ độ cao so với mặt đất sau đó giây nó đạt độ cao và sau giây nó ở độ cao. Hỏi độ cao cao nhất mà quả bóng đạt được là bao nhiêu mét?

Xem đáp án » 27/08/2023 211

Câu 3:

Cho hình bình hành ABCD có AB = 2BC. Gọi E và F theo thứ tự là trung điểm của AB, CD.

a) Chứng minh DEBF là hình bình hành.

b) Chứng minh ADFE là hình thoi.

c) Gọi M là giao điểm của DE và AF, N là giao điểm của CE và BF. Chứng minh EMFN là hình chữ nhật.

Xem đáp án » 16/08/2023 160

Câu 4:

Cho tam giác ABC vuông tại B có = 30°, BC = a. Gọi I là trung điểm của AC. Hãy tính độ dài vectơ AC,AI,AB+AC,BC

Xem đáp án » 27/08/2023 157

Câu 5:

Cho hình vuông ABCD cạnh a. Tính độ dài vectơ u=4MA3MB+MC2MD .

Xem đáp án » 16/08/2023 151

Câu 6:

Người ta dự định dùng hai loại nguyên liệu để chiết xuất ít nhất 140kg chất A và 9kg chất B. Từ mỗi tấn nguyên liệu loại I giá 4 triệu đồng, có thể chiết xuất được 20kg chất A và 0,6kg chất B. Từ mỗi tấn nguyên liệu loại II giá triệu đồng có thể chiết xuất được 10kg chất A và 1,5kg chất B. Hỏi phải dùng bao nhiêu tấn nguyên liệu mỗi loại để chi phí mua nguyên liệu là ít nhất, biết rằng cơ sở cung cấp nguyên liệu chỉ có cung cấp không quá 10 tấn nguyên liệu loại I và không quá 9 tấn nguyên liệu loại

Xem đáp án » 27/08/2023 148

Câu 7:

cho tam giác ABC vuông tại A. Gọi M là trung điểm của AC , trên tia đối của tia MB lấy điểm D sao cho MD = MB.              

1) Chứng minh AD = BC.        

2) Chứng minh CD vuông góc với AC.          

3) Đường thẳng qua B song song với AC cắt tia DC tại N. Chứng minh ∆ABM = ∆CNM.

Xem đáp án » 16/08/2023 140

Câu 8:

Cho hình vuông ABCD có cạnh bằng a. Gọi E là trung điểm cạnh BC, F là trung điểm cạnh AE. Tìm độ dài đoạn thẳng DF.

Xem đáp án » 27/08/2023 135

Câu 9:

Một công ty cần thuê xe để chở 120 người và 6,5 tấn hàng. Nơi thuê xe có hai loại xe A và B, trong đó loại xe A có 9 chiếc và loại xe B có 8 chiếc. Một chiếc xe loại A cho thuê với giá 4 triệu đồng, một chiếc xe loại B cho thuê với giá 3 triệu đồng. Biết rằng mỗi chiếc xe loại A có thể chở tối đa 20 người và 0,5 tấn hàng; mỗi chiếc xe loại B có thể chở tối đa 10 người và 2 tấn hàng. Hỏi phải thuê bao nhiêu xe mỗi loại để chi phí bỏ ra là thấp nhất?

Xem đáp án » 27/08/2023 129

Câu 10:

Tìm chữ số x, y để 14x8y¯ chia hết cho 3 và 5.

Xem đáp án » 16/08/2023 129

Câu 11:

Cho hình chóp S.ABCD đáy là hình thang (đáy lớn AB). Gọi M, N là trung điểm BC; SB. P thuộc AD sao cho 2PD = PA. Chứng minh MN // (SCD), tìm giao điểm của SA và (MNP).

Xem đáp án » 16/08/2023 128

Câu 12:

Có bao nhiêu giá trị nguyên của tham số m để hàm số:

y =5msinxm+1cosx  xác định trên ℝ?

Xem đáp án » 27/08/2023 125

Câu 13:

Tìm x, y thỏa mãn 17x2y¯ chia hết cho 2; 5; 3.

Xem đáp án » 19/08/2023 122

Câu 14:

Một mảnh vườn hình chữ nhật có chu vi là 80m và chiều rộng bằng 35 chiều dài

a) Tính diện tích thửa ruộng đó.

b) Ở giữa mảnh vườn người ta đào một cái ao thả cá. Tính diện tích của ao,biết diện tích của ao chiếm 25  diện tích mảnh vườn.

Xem đáp án » 16/08/2023 115

Câu 15:

Cho tam giác ABC vuông tại A, đường cao AH. Biết HB = 3,6 cm HC = 6,4 cm.

​a) Tính AB, AC, AH.

​b) Kẻ HE vuông góc AB, HF vuông góc AC. Chứng minh AB.AE = AC.AF.

Xem đáp án » 16/08/2023 107

Câu hỏi mới nhất

Xem thêm »
Xem thêm »