Cho phương trình x2 + (2m ‒ 1)x ‒ m = 0. Chứng minh rằng phương trình luôn luôn có nghiệm với mọi m.
x2 + (2m − 1)x − m = 0
* Để phương trình luôn có 2 nghiệm ∀m thì: Δ ≥ 0
Δ = (2m − 1)2 − 4.1.(−m)
⇔ 4m2 − 4m + 1 + 4m ≥ 0
⇔ 4m2 + 1≥ 0 ( luôn đúng ∀m ∈ ℝ).
Vậy phương trình luôn luôn có 2 nghiệm ∀m ∈ ℝ.
Giá trị nhỏ nhất của biết thức F = y - x trên miền xác định bởi hệ \[\left\{ \begin{array}{l}y - 2x \le 2\\2y - x \ge 4\\x + y \le 5\end{array} \right.\] là:
Tìm m để khoảng cách từ gốc tọa độ O đến đường thẳng (d): y = (m ‒3)x + 1 (m ≠ 3) bằng \[\frac{1}{2}\]
Cho hình chữ nhật ABCD có AB = a và \(AD = a\sqrt 2 \). Gọi K là trung điểm của cạnh AD. Tính \(\overrightarrow {BK} \cdot \overrightarrow {AC} .\)
Diện tích xung quanh của hình nón có độ dài đường sinh l và bán kính r bằng
Cho tam giác \(ABC\), trên các đường thẳng BC, AC, AB lần lượt lấy các điểm M, N, P sao cho \(\overrightarrow {MB} = 3\overrightarrow {MC} ;\overrightarrow {NA} = 3\overrightarrow {CN} ;\overrightarrow {PA} + \overrightarrow {PB} = \vec 0\)
a) Tính \(\overrightarrow {PM} ,\overrightarrow {PN} \) theo \(\overrightarrow {AB} ,\overrightarrow {AC} \)
b) Chứng minh M, N, P thẳng hàng.
Cho lục giác đều ABCDEF tâm O . Hỏi có bao nhiêu vecto khác vecto không; cùng phương với \[\overrightarrow {OC} \] có điểm đầu và điểm cuối là các đỉnh của lục giác?
Tính chiều cao của cây trong hình vẽ bên (Làm tròn đến chữ số thập phân thứ nhất)
Trong hệ trục \[\left( {O;\overrightarrow i ;\overrightarrow j } \right)\] tọa độ của vectơ \[\overrightarrow i + \overrightarrow j \]là:
Trong một môn học, Thầy giáo có 30 câu hỏi khác nhau gồm 5 câu khó, 10 câu trung bình và 15 câu dễ. Từ 30 câu hỏi đó có thể lập được bao nhiêu đề kiểm tra, mỗi đề gồm 5 câu hỏi khác nhau, sao cho trong mỗi đề nhất thiết phải có đủ cả 3 câu (khó, dễ, trung bình) và số câu dễ không ít hơn 2 ?
Trong mặt phẳng tọa độ Oxy cho hai điểm A(2;2), B(5; ‒2). Tìm điểm M thuộc trục hoành sao cho \[\widehat {AMB} = 90^\circ \]
Ba người cùng bắn vào 1 bia. Xác suất để người thứ nhất, thứ hai,thứ ba bắn trúng đích lần lượt là 0,8 ; 0,6; 0,5. Xác suất để có đúng 2 người bắn trúng đích bằng:
Miền nghiệm của bất phương trình nào sau đây được biểu diễn bởi nửa mặt phẳng không bị gạch trong hình vẽ bên (không kể bờ là đường thẳng)?
tam giác ABC. Gọi M là điểm trên cạnh BC sao cho MB = 3MC. Khi đó, biễu diễn \(\overrightarrow {AM} \) theo \(\overrightarrow {AB} \) và \(\overrightarrow {AC} \) là:
Trong mặt phẳng tọa độ Oxy, cho hai điểm M(1; 2), M'(−2; −4) và số k = 2. Phép vị tự tỉ số k = 2 biến điểm M thành điểm M’ có tâm vị tự là: