Thứ sáu, 22/11/2024
IMG-LOGO

Câu hỏi:

08/07/2024 64

Cho hình lăng trụ đứng ABC. A'B'C' có đáy ABC là tam giác đều cạnh a. Khoảng cách từ tâm O của tam giác ABC đến mặt phẳng (A'BC) bằng \[\frac{a}{6}\]Thể tích khối lăng trụ bằng

Mệnh đề nào đúng?


A. \(\frac{{3{a^3}\sqrt 2 }}{4}.\)



B. \(\frac{{3{a^3}\sqrt 2 }}{8}.\)



C. \(\frac{{3{a^3}\sqrt 2 }}{{28}}.\)



D. \(\frac{{3{a^3}\sqrt 2 }}{{16}}.\)


Đáp án chính xác

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Cho hình lăng trụ đứng ABC. A'B'C' có đáy ABC là tam giác đều cạnh a (ảnh 1)

Gọi M là trung điểm của BC và H là hình chiếu của A trên A’M.

Ta có :

\(\left. {\begin{array}{*{20}{c}}{BC \bot AM}\\{BC \bot AA'}\end{array}} \right\}\) BC (AA’M) BC AH    (1).

Mà AH A’M   (2).

Từ (1) và (2) d(A, (A’BC)) = AH.

Ta có:  \(\frac{{d\left( {O,\left( {A'BC} \right)} \right)}}{{d\left( {A,\left( {A'BC} \right)} \right)}} = \frac{{MO}}{{MA}} = \frac{1}{3}\) (do tính chất trọng tâm).

\( \Rightarrow d\left( {A,\left( {A'BC} \right)} \right) = 3d\left( {O,\left( {A'BC} \right)} \right) = \frac{a}{2}\)

\( \Rightarrow AH = \frac{a}{2}\)

Xét tam giác vuông A'AM :

\(\frac{1}{{A{H^2}}} = \frac{1}{{A{A^{{\rm{'}}2}}}} + \frac{1}{{A{M^2}}}\)

\( \Leftrightarrow \frac{1}{{A{A^{{\rm{'}}2}}}} = \frac{4}{{{a^2}}} - \frac{4}{{3{a^2}}} \Leftrightarrow AA' = \frac{{a\sqrt 3 }}{{2\sqrt 2 }}\)

Suy ra thể tích lăng trụ ABC.A’B’C’ là:

\(V = AA' \cdot {S_{\Delta ABC}} = \frac{{a\sqrt 3 }}{{2\sqrt 2 }} \cdot \frac{{{a^2}\sqrt 3 }}{4} = \frac{{3\sqrt 2 {a^3}}}{{16}}.\)

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình bình hành ABCD, I là giao điểm hai đường chéo. Khi đó, khẳng định nào sau đây là đúng?

Xem đáp án » 21/09/2023 101

Câu 2:

Cho phương trình \({\rm{cot}}x = \sqrt 3 .\) Các nghiệm của phương trình là:

Xem đáp án » 21/09/2023 94

Câu 3:

Trong mặt phẳng tọa độ Oxy cho hai đường thẳng a và b có phương trình lần lượt là 4x + 3y + 5 = 0 và x + 7y ‒ 4 = 0. Nếu có phép quay biến đường thẳng này thành đường thẳng kia thì số đo của góc quay φ (0 ≤ φ ≤ 180°) là:

Xem đáp án » 21/09/2023 90

Câu 4:

Cho hình chóp S.ABC có đáy là tam giác ABC thỏa mãn AB = AC = 4, \[\widehat {BAC} = 30^\circ \]. Mặt phẳng (P) song song với (ABC) cắt đoạn SA tại M sao cho SM = 2MA. Diện tích thiết diện của (P) và hình chóp S.ABC bằng bao nhiêu?

Xem đáp án » 21/09/2023 89

Câu 5:

Trong mặt phẳng Oxy cho đường thẳng (d: 2x ‒ y + 1 = 0 ). Để phép quay tâm I góc quay (2017π) biến d thành chính nó thì tọa độ của I là:

Xem đáp án » 21/09/2023 82

Câu 6:

Biết \[\sin a + \cos a = \sqrt 2 \]. Hỏi giá trị của sin4a + cos4a bằng bao nhiêu ?

Xem đáp án » 21/09/2023 80

Câu 7:

Xét phép vị tự V(I,3) biến tam giác ABC thành tam giác A'B'C'. Hỏi chu vi tam giác A'B'C' gấp mấy lần chu vi tam giác ABC.

Xem đáp án » 21/09/2023 78

Câu 8:

Cho tam giác ABC có trực tâm H. Gọi D là điểm đối xứng với B qua tâm O của đường tròn ngoại tiếp tam giác ABC. Khẳng định nào sau đây đúng?

Xem đáp án » 21/09/2023 72

Câu 9:

Cho tam giác ABC. Gọi M là điểm được xác định: \(4\overrightarrow {BM} - 3\overrightarrow {BC} = \vec 0\). Khi đó vectơ \(\overrightarrow {AM} \) bằng

Xem đáp án » 21/09/2023 71

Câu 10:

Cho lục giác đều ABCDEF có tâm O. Số các vectơ bằng vectơ \[\overrightarrow {OC} \] có điểm đầu và điểm cuối là các đỉnh của lục giác là:

Xem đáp án » 21/09/2023 69

Câu 11:

yếu tố nào sau đây xác định một mặt phẳng

Xem đáp án » 21/09/2023 66

Câu 12:

Một người gửi tiết kiệm với lãi suất 6,5% năm và lãi hàng năm được nhập vào vốn. Hỏi khoảng bao nhiêu năm người đó thu được gấp đôi số tiền ban đầu?

Xem đáp án » 21/09/2023 65

Câu 13:

Số mặt phẳng đối xứng của hình hộp chữ nhật (các kích thước khác nhau) là:

Xem đáp án » 21/09/2023 64

Câu 14:

Cho hai đường thẳng d1 và d2 song song có bao nhiêu phép tịnh tiến biến đường thẳng d1 thành đường thẳng d2:

Xem đáp án » 21/09/2023 61

Câu 15:

Có bao nhiêu cách xếp (5 ) học sinh thành một hàng dọc?

Xem đáp án » 21/09/2023 59

Câu hỏi mới nhất

Xem thêm »
Xem thêm »