IMG-LOGO

Câu hỏi:

11/07/2024 74

Một nhà khoa học nghiên cứu về tác động phối hợp của vitamin A và vitamin B đối với cơ thể con người. Kết quả như sau:

- Một người có thể tiếp nhận được mỗi ngày không quá 600 đơn vị vitamin A và không quá 500 đơn vị vitamin B.

- Một người mỗi ngày cần từ 400 đến 1000 đơn vị vitamin cả A và B.

Do tác động phối hợp của hai loại vitamin, mỗi ngày, số đơn vị vitamin B không ít hơn \[\frac{1}{2}\]  số đơn vị vitamin A nhưng không nhiều hơn ba lần số đơn vị vitamin A. Biết giá một đơn vị vitamin A là 9 đồng và giá một đơn vị vitamin B là 7,5 đồng. Tìm phương án dùng hai loại vitamin A, B thoả mãn các điều kiện trên để có số tiền phải trả là ít nhất.

Trả lời:

verified Giải bởi Vietjack

Gọi x là số đơn vị vitamin A mỗi người tiếp nhận trong một ngày (x ≥ 0)

Gọi y là số đơn vị vitamin A mỗi người tiếp nhận trong một ngày (y ≥ 0)

Một người có thể tiếp nhận được mỗi ngày không quá 600 đơn vị vitamin A và không quá 500 đơn vị vitamin B nên x ≤ 600 và y ≤ 500.

Một người mỗi ngày cần từ 400 đến 1000 đơn vị vitamin cả A và B nên:

400 ≤ x + y ≤ 1000

Do tác động phối hợp của hai loại vitamin, mỗi ngày, số đơn vị vitamin B không ít hơn  số đơn vị vitamin A nhưng không nhiều hơn ba lần số đơn vị vitamin A nên: \[\left\{ \begin{array}{l}y \ge \frac{1}{2}x\\y \le 3x\end{array} \right.\]

Ta có hệ bất phương trình giữa x và y:

\[\left\{ \begin{array}{l}x \le 600\\y \le 500\\x + y \ge 400\\x + y \le 1000\\y \ge \frac{1}{2}x\\y \le 3x\end{array} \right.\]

Biểu diễn miền nghiệm của hệ bất phương trình:

- Biểu diễn miền nghiệm D1 của bất phương trình x ≤ 600:

+ Vẽ đường thẳng d1: x = 600 trên mặt phẳng tọa độ Oxy.

+ Thay x = 0, y = 0 vào bất phương trình ta được 0 ≤ 600 là mệnh đề đúng nên tọa độ điểm O(0; 0) thỏa mãn bất phương trình x ≤ 600.

Vậy miền nghiệm D1 của bất phương trình x ≤ 600 là nửa mặt phẳng bờ d1 (kể cả bờ d1) chứa điểm O.

* Tương tự ta biểu diễn các miền nghiệm:

- Miền nghiệm D2 của bất phương trình y ≤ 500: là nửa mặt phẳng bờ d2 (kể cả bờ d2: y = 500) chứa điểm O.

- Miền nghiệm D3 của bất phương trình x + y ≥ 400: là nửa mặt phẳng bờ d3 (kể cả bờ d3: x + y = 400) không chứa điểm O.

- Miền nghiệm D4 của bất phương trình x + y ≤ 1000: là nửa mặt phẳng bờ d4 (kể cả bờ d4: x + y = 1000) chứa điểm O.

- Miền nghiệm D5 của bất phương trình \[y \ge \frac{1}{2}x\]: là nửa mặt phẳng bờ d5 (kể cả bờ d5\[y = \frac{1}{2}x\]) chứa điểm M(0; 50).

- Miền nghiệm D6 của bất phương trình y ≤ 3x: là nửa mặt phẳng bờ d6 (kể cả bờ d6: y = 3x) không chứa điểm M (0; 50).

Ta có đồ thị sau:

Một nhà khoa học nghiên cứu về tác động phối hợp của vitamin A và vitamin B đối với (ảnh 1)

Miền nghiệm của hệ bất phương trình là miền của đa giác ABCDEF với:

A(100; 300); \[B\left( {\frac{{500}}{3};500} \right)\]; C(500; 500); D(600; 400); E(600; 300); \[F\left( {\frac{{800}}{3};\frac{{400}}{3}} \right)\]

Số tiền trả cho x đơn vị vitamin A và y đơn vị vitamin B là: F (x; y) = 9x + 7,5y.

Để có số tiền phải trả là ít nhất thì F(x; y) phải nhỏ nhất.

Tại A(100; 300): F = 9.100 + 7,5. 300 = 3150;

Tại \[B\left( {\frac{{500}}{3};500} \right)\]: F = 9.  + 7,5. 500 = 5250;

Tại C(500; 500): F = 9. 500 + 7,5. 500 = 8250;

Tại D(600, 400): F = 9. 600 + 7,5. 400 = 8400;

Tại E(600, 300): F = 9. 600 + 7,5. 300 = 7650;

Tại \[F\left( {\frac{{800}}{3};\frac{{400}}{3}} \right)\], ta có: \[9 \cdot \frac{{800}}{3} + 7,5 \cdot \frac{{400}}{3} = 3\,\,400\]

Vậy F(x; y) nhỏ nhất là 3150 khi x =100 và y = 300.

Vậy mỗi người sẽ dùng 100 đơn vị vitamin A và 300 đơn vị vitamin B để đảm bảo các điều kiện số lượng sử dụng và chi phí phải trả là ít nhất.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Xác định miền nghiệm của bất phương trình: 2x y 0.

Xem đáp án » 30/09/2023 147

Câu 2:

Tìm tất cả các giá trị của tham số m để hàm số \[y = {\log _{2020}}(mx - m + 2)\]xác định trên \[[1; + \infty )\].

Xem đáp án » 30/09/2023 118

Câu 3:

Một máy bay đang bay ở độ cao 12 km. Khi bay hạ cánh xuống mặt đất, đường đi của máy bay tạo một góc nghiêng so với mặt đất. Nếu cách sân bay 320 km máy bay bắt đầu hạ cánh thì góc nghiêng là bao nhiêu (làm tròn đến phút)?

Xem đáp án » 30/09/2023 111

Câu 4:

Cho hàm số y = ax3 + bx2 + cx + d (a, b, c, d ℝ) có đồ thị là đường cong trong hình bên. Có bao nhiêu số dương trong các số a, b, c, d?

Cho hàm số y = ax^3 + bx^2 + cx + d (a, b, c, d thuộc R) có đồ thị là đường cong trong  (ảnh 1)

Xem đáp án » 30/09/2023 109

Câu 5:

Cho A là tập hợp các học sinh lớp 10 đang học ở trường em và B là tập hợp các học sinh đang học môn Tiếng Anh của trường em. Hãy diễn đạt bằng lời các tập hợp sau: A B; A ∩ B; A \ B; B \ A.

Xem đáp án » 30/09/2023 97

Câu 6:

Cho hình bình hành ABCD, AB > AD. Hai đường chéo AC và BD cắt nhau tại O. Một đường thẳng tùy ý qua O cắt AB, CD lần lượt tai M, N. Chứng minh:    

OM = ON.

Xem đáp án » 30/09/2023 96

Câu 7:

Tìm 5 số chẵn liên tiếp, biết TBC của chúng bằng 126

Xem đáp án » 30/09/2023 95

Câu 8:

Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB // CD và AB = 2CD). Gọi M là trung điểm của cạnh SC. Xác định giao tuyến của hai mặt phẳng (SAB) và (SCD).

Xem đáp án » 30/09/2023 95

Câu 9:

Cho tam giác ABC vuông tại A, đường cao AH. Gọi D, E lần lượt là hình chiếu của H trên AB, AC. Chứng minh rằng: AD.AB = AE.AC = HC.HB.

Xem đáp án » 30/09/2023 92

Câu 10:

Cho hàm số y=f(x) xác định trên \{0}, liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau:

Cho hàm số y=f(x) xác định trên R \ {0}, liên tục trên mỗi khoảng xác định và có (ảnh 1)

Tìm tập hợp tất cả các giá trị của tham số thực m sao cho phương trình f(x) = m có ba nghiệm thực phân biệt.

Xem đáp án » 30/09/2023 91

Câu 11:

Tìm giá trị nhỏ nhất của biểu thức F(x; y) = y – x trên miền xác định bởi hệ bất phương trình \[\left\{ \begin{array}{l}y - 2x \le 2\\2y - x \ge 4\\x + y \le 5\end{array} \right.\].

Xem đáp án » 30/09/2023 90

Câu 12:

Lớp 10B có 7 học sinh giỏi Toán, 5 học sinh giỏi Lý, 6 học sinh giỏi Hóa, 3 học sinh giỏi cả Lý và Toán, 4 học sinh giỏi cả Toán và Hóa, 2 học sinh giỏi cả Lý và Hóa, 1 học sinh giỏi cả Toán, Lý, Hóa. Tính số học sinh của lớp 10B.

Xem đáp án » 30/09/2023 86

Câu 13:

Trong các khẳng định sau, khẳng định nào đúng?

Xem đáp án » 30/09/2023 85

Câu 14:

Chứng minh hai góc kề nhau của một hình bình hành không thể có số đo là 40° và 50°.

Xem đáp án » 30/09/2023 83

Câu 15:

Cho tam giác ABC có a2 = b2 + c2 − bc. Tính số đo của góc A.

Xem đáp án » 30/09/2023 82

Câu hỏi mới nhất

Xem thêm »
Xem thêm »