Trong một cuộc thi pha chế, mỗi đội chơi được sử dụng tối đa 24g hương liệu, 9 lít nước và 210g đường để pha chế nước cam và nước táo.
+ Để pha chế 1 lít nước cam cần 30g đường, 1 lít nước và 1g hương liệu;
+ Để pha chế 1 lít nước táo cần 10g đường, 1 lít nước và 4g hương liệu.
Mỗi lít nước cam nhận được 60 điểm thưởng, mỗi lít nước táo nhận được 80 điểm thưởng. Hỏi cần pha chế bao nhiêu lít nước trái cây mỗi loại để đạt được số điểm thưởng cao nhất?
Giả sử x, y lần lượt là số lít nước cam và số lít nước táo mà mỗi đội cần pha chế
(x, y ≥ 0)
Suy ra 30x + 10y là số gam đường cần dùng;
x + y là số lít nước cần dùng;
x + 4y là số gam hương liệu cần dùng
Theo giả thiết ta có:
\[\left\{ \begin{array}{l}30x + 10y \le 210\\x + y \le 9\\x + 4y \le 24\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3x + 1y \le 21\\x + y \le 9\\x + 4y \le 24\end{array} \right.\]
Theo bài số điểm thưởng nhận được sẽ là P(x;y) = 60x + 80y.
Ta đi tìm giá trị nhỏ nhất của biểu thức P với x, y thỏa mãn hệ bất phương trình.
Miền nghiệm là phần hình vẽ không tô màu ở hình trên hay là ngũ giác OBCDE với O(0; 0), B(0 ;6), C(4; 5), D(6; 3), E(7; 0).
Biểu thức P = 60x + 80y đạt GTLN tại (x;y) là tọa độ một trong các đỉnh của ngũ giác.
Thay lần lượt tọa độ các điểm O, B, C, D, E vào biểu thức P(x; y) ta được:
P(0; 0) = 0; P(0; 6) = 480; P(4; 5) = 640; P(6; 3) = 600; P(7; 0) = 420
Vậy cần pha chế 4 lít nước cam và 5 lít nước táo để đạt được số điểm thưởng cao nhất là 640.
Tìm tất cả các giá trị của tham số m để hàm số \[y = {\log _{2020}}(mx - m + 2)\]xác định trên \[[1; + \infty )\].
Một máy bay đang bay ở độ cao 12 km. Khi bay hạ cánh xuống mặt đất, đường đi của máy bay tạo một góc nghiêng so với mặt đất. Nếu cách sân bay 320 km máy bay bắt đầu hạ cánh thì góc nghiêng là bao nhiêu (làm tròn đến phút)?
Cho hàm số y = ax3 + bx2 + cx + d (a, b, c, d ∈ ℝ) có đồ thị là đường cong trong hình bên. Có bao nhiêu số dương trong các số a, b, c, d?
Cho A là tập hợp các học sinh lớp 10 đang học ở trường em và B là tập hợp các học sinh đang học môn Tiếng Anh của trường em. Hãy diễn đạt bằng lời các tập hợp sau: A ∪ B; A ∩ B; A \ B; B \ A.
Cho hình bình hành ABCD, AB > AD. Hai đường chéo AC và BD cắt nhau tại O. Một đường thẳng tùy ý qua O cắt AB, CD lần lượt tai M, N. Chứng minh:
OM = ON.
Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB // CD và AB = 2CD). Gọi M là trung điểm của cạnh SC. Xác định giao tuyến của hai mặt phẳng (SAB) và (SCD).
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D, E lần lượt là hình chiếu của H trên AB, AC. Chứng minh rằng: AD.AB = AE.AC = HC.HB.
Cho hàm số y=f(x) xác định trên ℝ\{0}, liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau:
Tìm tập hợp tất cả các giá trị của tham số thực m sao cho phương trình f(x) = m có ba nghiệm thực phân biệt.
Tìm giá trị nhỏ nhất của biểu thức F(x; y) = y – x trên miền xác định bởi hệ bất phương trình \[\left\{ \begin{array}{l}y - 2x \le 2\\2y - x \ge 4\\x + y \le 5\end{array} \right.\].
Lớp 10B có 7 học sinh giỏi Toán, 5 học sinh giỏi Lý, 6 học sinh giỏi Hóa, 3 học sinh giỏi cả Lý và Toán, 4 học sinh giỏi cả Toán và Hóa, 2 học sinh giỏi cả Lý và Hóa, 1 học sinh giỏi cả Toán, Lý, Hóa. Tính số học sinh của lớp 10B.
Chứng minh hai góc kề nhau của một hình bình hành không thể có số đo là 40° và 50°.