Thứ sáu, 15/11/2024
IMG-LOGO

Câu hỏi:

18/07/2024 45

Tìm số nguyên dương n thỏa mãn:

\(\frac{1}{2}C_n^0 - \frac{1}{3}C_n^1 + \frac{1}{4}C_n^2 - \frac{1}{5}C_n^3 + ... + \frac{{{{\left( { - 1} \right)}^n}}}{{n + 2}}C_n^n = \frac{1}{{156}}\).

Trả lời:

verified Giải bởi Vietjack

Xét công thức tổng quát:

\(\frac{{{{\left( { - 1} \right)}^k}}}{{k + 2}}C_n^k = \frac{{{{\left( { - 1} \right)}^k}}}{{k + 2}}\,.\,\frac{{n!}}{{k!\,.\,\left( {n - k} \right)!}} = \frac{{{{\left( { - 1} \right)}^k}\,.\,\left( {k + 1} \right)}}{{\left( {n + 1} \right)\left( {n + 2} \right)}}\,.\,\frac{{\left( {n + 2} \right)!}}{{\left( {k + 2} \right)!\,.\,\left( {n - k} \right)!}}\)

\( = \frac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}}\,.\,{\left( { - 1} \right)^k}\,.\,\left( {k + 1} \right)\,.\,C_{n + 2}^{k + 2}\)

\[ = \frac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}}\,.\,\left[ {{{\left( { - 1} \right)}^k}\,.\,\left( { - 1} \right)\,.\,C_{n + 2}^{k + 2} + {{\left( { - 1} \right)}^k}\,.\,\left( {k + 2} \right)\,.\,C_{n + 2}^{k + 2}} \right]\]

\[ = \frac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}}\,.\,\left[ {\left( { - 1} \right)\,.\,{{\left( { - 1} \right)}^{k + 2}}\,.\,C_{n + 2}^{k + 2} + {{\left( { - 1} \right)}^k}\,.\,\left( {n + 2} \right)\,.\,C_{n + 1}^{k + 1}} \right]\]

\[ = - \frac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}}\,.\,{\left( { - 1} \right)^{k + 2}}\,.\,C_{n + 2}^{k + 2} - \frac{1}{{n + 1}}\,.\,{\left( { - 1} \right)^{k + 1}}\,.\,C_{n + 1}^{k + 1}\]

Khi đó: \(\frac{1}{2}C_n^0 - \frac{1}{3}C_n^1 + \frac{1}{4}C_n^2 - \frac{1}{5}C_n^3 + ... + \frac{{{{\left( { - 1} \right)}^n}}}{{n + 2}}C_n^n\)

\( = - \frac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}}\left[ {C_{n + 2}^2 - C_{n + 2}^3 + C_{n + 2}^4 + ... + {{\left( { - 1} \right)}^{n + 2}}C_{n + 2}^{n + 2}} \right]\)

\( - \frac{1}{{n + 1}}\left[ { - C_{n + 1}^1 + C_{n + 1}^2 - C_{n + 1}^3 + ... + {{\left( { - 1} \right)}^{n + 1}}C_{n + 1}^{n + 1}} \right]\)

\( = - \frac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}}\left[ {{{\left( { - 1 + 1} \right)}^{n + 2}} - C_{n + 2}^0 + C_{n + 2}^1} \right] - \frac{1}{{n + 1}}\left[ {{{\left( { - 1 + 1} \right)}^{n + 1}} - C_{n + 1}^0} \right]\)

\( =  - \frac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}}\,.\,\left( { - 1 + n + 2} \right) - \frac{1}{{n + 1}}\,.\,\left( { - 1} \right)\)

\( = - \frac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}}\,.\,\left( {n + 1} \right) - \frac{1}{{n + 1}}\,.\,\left( { - 1} \right)\)

\( = - \frac{1}{{n + 2}} + \frac{1}{{n + 1}} = \frac{{\left( {n + 2} \right) - \left( {n + 1} \right)}}{{\left( {n + 1} \right)\left( {n + 2} \right)}}\)

\( = \frac{{n + 2 - n - 1}}{{\left( {n + 1} \right)\left( {n + 2} \right)}} = \frac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}}\)

Do đó, theo bải ra ta có: \(\frac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}} = \frac{1}{{156}}\)

Û (n + 1)(n + 2) = 156

Û n2 + 3n + 2 = 156

Û n2 + 3n − 154 = 0

\[ \Leftrightarrow \left[ \begin{array}{l}n = 11\;\;\;\left( n \right)\\n = - 14\;\left( l \right)\end{array} \right.\]

Vậy n = 11 là số nguyên dương cần tìm.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho các mệnh đề sau:

a. Nếu a // (P) thì a song song với mọi đường thẳng nằm trong (P).

b. Nếu a // (P) thì a song song với một đường thẳng nào đó nằm trong (P).

c. Nếu a // (P) thì có vô số đường thẳng nằm trong (P) và song song với a

d. Nếu a // (P) thì có một đường thẳng d nào đó nằm trong (P) sao cho a và d đồng phẳng.

Số mệnh đề đúng là:

Xem đáp án » 02/10/2023 108

Câu 2:

Xác định parabol y = ax2 – bx + 1 trong mỗi trường hợp sau:

a) Có đỉnh I(−2; 37).

b) Có trục đối xứng là x = −1 và tung độ của đỉnh bằng 5.

Xem đáp án » 02/10/2023 82

Câu 3:

Có bao nhiêu cách xếp 6 cặp vợ chồng ngồi xung quanh một chiếc bàn tròn, sao cho mỗi bà đều ngồi cạnh chồng của mình?

Xem đáp án » 02/10/2023 81

Câu 4:

Một nhà khoa học đã nghiên cứu về tác động phối hợp của hai loại Vitamin A và B đã thu được kết quả như sau: Trong một ngày, mỗi người cần từ 400 đến 1000 đơn vị Vitamin cả A lẫn B và có thể tiếp nhận không quá 600 đơn vị vitamin A và không quá 500 đơn vị vitamin B. Do tác động phối hợp của hai loại vitamin trên nên mỗi ngày một người sử dụng số đơn vị vitamin B không ít hơn một nửa số đơn vị vitamin A và không nhiều hơn ba lần số đơn vị vitamin A. Tính số đơn vị vitamin mỗi loại ở trên để một người dùng mỗi ngày sao cho chi phí rẻ nhất, biết rằng mỗi đơn vị vitamin A có giá 9 đồng và mỗi đơn vị vitamin B có giá 7,5 đồng.

Xem đáp án » 02/10/2023 77

Câu 5:

Xác định các hệ số a và b để Parabol (P): y = ax2 + 4x − b có đỉnh I (−1; −5).

Xem đáp án » 02/10/2023 75

Câu 6:

Tính giá trị lớn nhất của hàm số \(f\left( x \right) = {e^{{x^3} - 3x + 3}}\) trên đoạn [0; 2].

Xem đáp án » 02/10/2023 74

Câu 7:

Có bao nhiêu cách xếp 6 nam và 6 nữ ngồi xung quanh một chiếc bàn tròn, sao cho nam và nữ ngồi xen kẽ nhau?

Xem đáp án » 02/10/2023 72

Câu 8:

Cho tam giác ABC có a2 + b2 − c2 > 0. Khi đó:

Xem đáp án » 02/10/2023 72

Câu 9:

Cho bất phương trình 2x + 3y − 6 ≤ 0 (1). Chọn khẳng định đúng trong các khẳng định sau:

Xem đáp án » 02/10/2023 71

Câu 10:

Miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l}2x + 3y - 6 < 0\\x \ge 0\\2x - 3y - 1 \le 0\end{array} \right.\) chứa điểm nào sau đây?

Xem đáp án » 02/10/2023 71

Câu 11:

Gọi G là trọng tâm tam giác đều ABC có cạnh bằng a. Mệnh đề nào sau đây là sai?

Xem đáp án » 02/10/2023 70

Câu 12:

Hai xạ thủ cùng bắn vào bia. Xác suất người thứ nhất bắn trúng là 80%. Xác suất người thứ hai bắn trúng là 70%. Tính xác suất để cả hai người cùng bắn trúng.

Xem đáp án » 02/10/2023 70

Câu 13:

Gieo một con súc sắc cân đối và đồng chất 6 lần độc lập. Tính xác xuất để không lần nào xuất hiện mặt có số chấm là một số chẵn? 

Xem đáp án » 02/10/2023 70

Câu 14:

Một tam giác có chiều cao bằng \(\frac{3}{4}\) cạnh đáy. Nếu chiều cao tăng thêm 3 dm và cạnh đáy giảm đi 3 dm thì diện tích của nó tăng thêm 12 dm2. Tính diện tích của tam giác ban đầu.

Xem đáp án » 02/10/2023 69

Câu 15:

Tìm m để phương trình log2 x + log x − m = 0 có 2 nghiệm phân biệt thuộc khoảng (0; 1)

Xem đáp án » 02/10/2023 69

Câu hỏi mới nhất

Xem thêm »
Xem thêm »