Chủ nhật, 02/02/2025
IMG-LOGO

Câu hỏi:

14/07/2024 63

Gọi S là tập hợp tất cả các số tự nhiên có 4 chữ số đôi một khác nhau và các chữ số thuộc tập hợp {1; 2; 3; 4; 5; 6; 7}. Chọn ngẫu nhiên một số thuộc S, xác suất để số đó không có hai chữ số liên tiếp nào cùng chẵn bằng.

Trả lời:

verified Giải bởi Vietjack

Có \(A_7^4\) cách tạo ra số có 4 chữ số phân biệt từ X = {1; 2; 3; 4; 5; 6; 7}

Do đó S có \(A_7^4 = 840\) (phần tử).

Chọn một số từ tập S nên n (Ω) = 840.

Gọi biến cố A: "Chọn ngẫu nhiên một số thuộc S, xác suất để số đó không có hai chữ số liên tiếp nào cùng chẵn”.

Nhận thấy không thể có 3 chữ số chẵn hoặc 4 chữ số chẵn vì lúc đó luôn tồn tại hai chữ số chẵn nằm cạnh nhau.

+) Trường hợp 1: Cả 4 chữ số đều lẻ.

Chọn 4 số lẻ từ X và xếp thứ tự có \(A_4^4 = 24\) (số).

+) Trường hợp 2: Có 3 chữ số lẻ, 1 chữ số chẵn.

Chọn 3 chữ số lẻ, 1 chữ số chẵn từ X và xếp thứ tự có \(C_4^3\,.\,C_3^1\,.\,4! = 288\) (số).

+) Trường hợp 3: Có 2 chữ số chẵn, 2 chữ số lẻ.

Có các cách sắp xếp như sau: CLCL; LCLC; CLLC

Với cách sắp xếp CLCL thì có 4.3.3.2 = 72 (số).

Tương tự với hai cách sắp xếp còn lại nên trường hợp này có 3.72 = 216 (số).

Vậy \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{24 + 288 + 216}}{{840}} = \frac{{22}}{{35}}\).

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho các mệnh đề sau:

a. Nếu a // (P) thì a song song với mọi đường thẳng nằm trong (P).

b. Nếu a // (P) thì a song song với một đường thẳng nào đó nằm trong (P).

c. Nếu a // (P) thì có vô số đường thẳng nằm trong (P) và song song với a

d. Nếu a // (P) thì có một đường thẳng d nào đó nằm trong (P) sao cho a và d đồng phẳng.

Số mệnh đề đúng là:

Xem đáp án » 02/10/2023 129

Câu 2:

Có bao nhiêu cách xếp 6 cặp vợ chồng ngồi xung quanh một chiếc bàn tròn, sao cho mỗi bà đều ngồi cạnh chồng của mình?

Xem đáp án » 02/10/2023 105

Câu 3:

Xác định parabol y = ax2 – bx + 1 trong mỗi trường hợp sau:

a) Có đỉnh I(−2; 37).

b) Có trục đối xứng là x = −1 và tung độ của đỉnh bằng 5.

Xem đáp án » 02/10/2023 93

Câu 4:

Miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l}2x + 3y - 6 < 0\\x \ge 0\\2x - 3y - 1 \le 0\end{array} \right.\) chứa điểm nào sau đây?

Xem đáp án » 02/10/2023 88

Câu 5:

Một nhà khoa học đã nghiên cứu về tác động phối hợp của hai loại Vitamin A và B đã thu được kết quả như sau: Trong một ngày, mỗi người cần từ 400 đến 1000 đơn vị Vitamin cả A lẫn B và có thể tiếp nhận không quá 600 đơn vị vitamin A và không quá 500 đơn vị vitamin B. Do tác động phối hợp của hai loại vitamin trên nên mỗi ngày một người sử dụng số đơn vị vitamin B không ít hơn một nửa số đơn vị vitamin A và không nhiều hơn ba lần số đơn vị vitamin A. Tính số đơn vị vitamin mỗi loại ở trên để một người dùng mỗi ngày sao cho chi phí rẻ nhất, biết rằng mỗi đơn vị vitamin A có giá 9 đồng và mỗi đơn vị vitamin B có giá 7,5 đồng.

Xem đáp án » 02/10/2023 86

Câu 6:

Xác định các hệ số a và b để Parabol (P): y = ax2 + 4x − b có đỉnh I (−1; −5).

Xem đáp án » 02/10/2023 85

Câu 7:

Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(−3; 0), B(3; 0) và C(2; 6). Gọi H(a; b) là tọa độ trực tâm của tam giác đã cho. Tính a + 6b.  

Xem đáp án » 02/10/2023 84

Câu 8:

Có bao nhiêu cách xếp 6 nam và 6 nữ ngồi xung quanh một chiếc bàn tròn, sao cho nam và nữ ngồi xen kẽ nhau?

Xem đáp án » 02/10/2023 83

Câu 9:

Tính giá trị lớn nhất của hàm số \(f\left( x \right) = {e^{{x^3} - 3x + 3}}\) trên đoạn [0; 2].

Xem đáp án » 02/10/2023 81

Câu 10:

Tìm m để phương trình log2 x + log x − m = 0 có 2 nghiệm phân biệt thuộc khoảng (0; 1)

Xem đáp án » 02/10/2023 81

Câu 11:

Gọi G là trọng tâm tam giác đều ABC có cạnh bằng a. Mệnh đề nào sau đây là sai?

Xem đáp án » 02/10/2023 81

Câu 12:

Gọi m0 là giá trị thực của tham số m để parabol (P): y = x2 − 2x + 3 − m cắt trục hoành Ox tại hai điểm phân biệt A, B sao cho độ dài đoạn thẳng AB bằng 4. Tìm m0.

Xem đáp án » 02/10/2023 80

Câu 13:

Tính giá trị lớn nhất và nhỏ nhất của hàm số f (x) = ln (x2 − x + 1) trên đoạn [1; 3].

Xem đáp án » 02/10/2023 80

Câu 14:

Hai xạ thủ cùng bắn vào bia. Xác suất người thứ nhất bắn trúng là 80%. Xác suất người thứ hai bắn trúng là 70%. Tính xác suất để cả hai người cùng bắn trúng.

Xem đáp án » 02/10/2023 80

Câu 15:

Gieo một con súc sắc cân đối và đồng chất 6 lần độc lập. Tính xác xuất để không lần nào xuất hiện mặt có số chấm là một số chẵn? 

Xem đáp án » 02/10/2023 80

Câu hỏi mới nhất

Xem thêm »
Xem thêm »