Cho đa giác đều 2018 đỉnh. Hỏi có bao nhiêu tam giác có đỉnh là đỉnh của đa giác và có một góc lớn hơn 100°?
Gọi A1, A2, …, A2018 là các đỉnh của đa giác đều 2018 đỉnh.
Gọi (O) là đường tròn ngoại tiếp đa giác đều A1 A2… A2018
Các đỉnh của đa giác đều chia (O) thành 2018 cung tròn bằng nhau, mỗi cung tròn có số đo bằng \(\frac{{360^\circ }}{{2018}}\).
Vì tam giác cần đếm có đỉnh là đỉnh của đa giác nên các góc của tam giác là các góc nội tiếp của (O).
Suy ra góc lớn hơn 100° sẽ chắn cung có số đo lớn hơn 200°.
Cố định một đỉnh Ai. Có 2018 cách chọn Ai.
Gọi Ai, Aj, Ak là các đỉnh sắp thứ tự theo chiều kim đồng hồ sao cho số đo cung nhỏ Ai Ak < 160° thì số đo cung lớn Ai Ak > 360° − 160° = 200°
\( \Rightarrow \widehat {{A_i}{A_j}{A_k}} > 100^\circ \) và tam giác Ai Aj Ak là tam giác cần đếm.
Khi đó cung AiAk là hợp liên tiếp của nhiều nhất \(\left[ {\frac{{160}}{{\frac{{360}}{{2018}}}}} \right] = 896\) cung tròn nói trên.
896 cung tròn này có 897 đỉnh.
Trừ đi đỉnh Ai thì còn 896 đỉnh.
Do đó có \(C_{896}^2\) cách chọn hai đỉnh Aj, Ak.
Vậy có tất cả \(2018\,.\,C_{896}^2\) tam giác thỏa mãn yêu cầu bài toán.
Cho các mệnh đề sau:
a. Nếu a // (P) thì a song song với mọi đường thẳng nằm trong (P).
b. Nếu a // (P) thì a song song với một đường thẳng nào đó nằm trong (P).
c. Nếu a // (P) thì có vô số đường thẳng nằm trong (P) và song song với a
d. Nếu a // (P) thì có một đường thẳng d nào đó nằm trong (P) sao cho a và d đồng phẳng.
Số mệnh đề đúng là:
Xác định parabol y = ax2 – bx + 1 trong mỗi trường hợp sau:
a) Có đỉnh I(−2; 37).
b) Có trục đối xứng là x = −1 và tung độ của đỉnh bằng 5.
Có bao nhiêu cách xếp 6 cặp vợ chồng ngồi xung quanh một chiếc bàn tròn, sao cho mỗi bà đều ngồi cạnh chồng của mình?
Một nhà khoa học đã nghiên cứu về tác động phối hợp của hai loại Vitamin A và B đã thu được kết quả như sau: Trong một ngày, mỗi người cần từ 400 đến 1000 đơn vị Vitamin cả A lẫn B và có thể tiếp nhận không quá 600 đơn vị vitamin A và không quá 500 đơn vị vitamin B. Do tác động phối hợp của hai loại vitamin trên nên mỗi ngày một người sử dụng số đơn vị vitamin B không ít hơn một nửa số đơn vị vitamin A và không nhiều hơn ba lần số đơn vị vitamin A. Tính số đơn vị vitamin mỗi loại ở trên để một người dùng mỗi ngày sao cho chi phí rẻ nhất, biết rằng mỗi đơn vị vitamin A có giá 9 đồng và mỗi đơn vị vitamin B có giá 7,5 đồng.
Tính giá trị lớn nhất của hàm số \(f\left( x \right) = {e^{{x^3} - 3x + 3}}\) trên đoạn [0; 2].
Có bao nhiêu cách xếp 6 nam và 6 nữ ngồi xung quanh một chiếc bàn tròn, sao cho nam và nữ ngồi xen kẽ nhau?
Tìm m để phương trình log2 x + log x − m = 0 có 2 nghiệm phân biệt thuộc khoảng (0; 1)
Gọi G là trọng tâm tam giác đều ABC có cạnh bằng a. Mệnh đề nào sau đây là sai?
Một tam giác có chiều cao bằng \(\frac{3}{4}\) cạnh đáy. Nếu chiều cao tăng thêm 3 dm và cạnh đáy giảm đi 3 dm thì diện tích của nó tăng thêm 12 dm2. Tính diện tích của tam giác ban đầu.
Gieo một con súc sắc cân đối và đồng chất 6 lần độc lập. Tính xác xuất để không lần nào xuất hiện mặt có số chấm là một số chẵn?
Cho bất phương trình 2x + 3y − 6 ≤ 0 (1). Chọn khẳng định đúng trong các khẳng định sau:
Miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l}2x + 3y - 6 < 0\\x \ge 0\\2x - 3y - 1 \le 0\end{array} \right.\) chứa điểm nào sau đây?
Hai xạ thủ cùng bắn vào bia. Xác suất người thứ nhất bắn trúng là 80%. Xác suất người thứ hai bắn trúng là 70%. Tính xác suất để cả hai người cùng bắn trúng.