Tìm điều kiện của a để phương trình \[\frac{{{a^2}}}{{1 - {{\tan }^2}x}} = \frac{{{{\sin }^2}x + {a^2} - 2}}{{\cos 2x}}\] có nghiệm.
Điều kiện: \[\left\{ \begin{array}{l}1 - {\tan ^2}x \ne 0\\\cos 2x \ne 0\\\cos x \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\frac{{{{\cos }^2}x - {{\sin }^2}x}}{{{{\cos }^2}x}} \ne 0\\\cos 2x \ne 0\\\cos x \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\cos 2x \ne 0\\\cos x \ne 0\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}2x \ne \frac{\pi }{2} + k\pi \\x \ne \frac{\pi }{2} + k\pi \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne \frac{\pi }{4} + \frac{{k\pi }}{2}\\x \ne \frac{\pi }{2} + k\pi \end{array} \right.\;\left( {k \in \mathbb{Z}} \right)\]
Ta có: \[\frac{{{a^2}}}{{1 - {{\tan }^2}x}} = \frac{{{{\sin }^2}x + {a^2} - 2}}{{\cos 2x}}\]
\( \Leftrightarrow \frac{{{a^2}}}{{\frac{{{{\cos }^2}x - {{\sin }^2}x}}{{{{\cos }^2}x}}}} = \frac{{{{\sin }^2}x + {a^2} - 2}}{{\cos 2x}}\)
\( \Leftrightarrow \frac{{{a^2}{{\cos }^2}x}}{{\cos 2x}} = \frac{{{{\sin }^2}x + {a^2} - 2}}{{\cos 2x}}\)
Þ a2cos2 x = sin2 x + a2 − 2
Û a2cos2 x = 1 − cos2 x + a2 − 2
Û (a2 + 1)cos2 x = a2 − 1
\( \Leftrightarrow {\cos ^2}x = \frac{{{a^2} + 1}}{{{a^2} - 1}} < 1,\;\forall x,\;a\)
Vì cos x ¹ 0 Þ 0 < cos2 x ≤ 1
Û cos2 x > 0 Û a2 − 1 > 0 Þ |a| > 1
Vậy với |a| > 1 thì phương trình có nghiệm.
Cho các mệnh đề sau:
a. Nếu a // (P) thì a song song với mọi đường thẳng nằm trong (P).
b. Nếu a // (P) thì a song song với một đường thẳng nào đó nằm trong (P).
c. Nếu a // (P) thì có vô số đường thẳng nằm trong (P) và song song với a
d. Nếu a // (P) thì có một đường thẳng d nào đó nằm trong (P) sao cho a và d đồng phẳng.
Số mệnh đề đúng là:
Có bao nhiêu cách xếp 6 cặp vợ chồng ngồi xung quanh một chiếc bàn tròn, sao cho mỗi bà đều ngồi cạnh chồng của mình?
Xác định parabol y = ax2 – bx + 1 trong mỗi trường hợp sau:
a) Có đỉnh I(−2; 37).
b) Có trục đối xứng là x = −1 và tung độ của đỉnh bằng 5.
Miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l}2x + 3y - 6 < 0\\x \ge 0\\2x - 3y - 1 \le 0\end{array} \right.\) chứa điểm nào sau đây?
Một nhà khoa học đã nghiên cứu về tác động phối hợp của hai loại Vitamin A và B đã thu được kết quả như sau: Trong một ngày, mỗi người cần từ 400 đến 1000 đơn vị Vitamin cả A lẫn B và có thể tiếp nhận không quá 600 đơn vị vitamin A và không quá 500 đơn vị vitamin B. Do tác động phối hợp của hai loại vitamin trên nên mỗi ngày một người sử dụng số đơn vị vitamin B không ít hơn một nửa số đơn vị vitamin A và không nhiều hơn ba lần số đơn vị vitamin A. Tính số đơn vị vitamin mỗi loại ở trên để một người dùng mỗi ngày sao cho chi phí rẻ nhất, biết rằng mỗi đơn vị vitamin A có giá 9 đồng và mỗi đơn vị vitamin B có giá 7,5 đồng.
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(−3; 0), B(3; 0) và C(2; 6). Gọi H(a; b) là tọa độ trực tâm của tam giác đã cho. Tính a + 6b.
Có bao nhiêu cách xếp 6 nam và 6 nữ ngồi xung quanh một chiếc bàn tròn, sao cho nam và nữ ngồi xen kẽ nhau?
Một tam giác có chiều cao bằng \(\frac{3}{4}\) cạnh đáy. Nếu chiều cao tăng thêm 3 dm và cạnh đáy giảm đi 3 dm thì diện tích của nó tăng thêm 12 dm2. Tính diện tích của tam giác ban đầu.
Tìm m để phương trình log2 x + log x − m = 0 có 2 nghiệm phân biệt thuộc khoảng (0; 1)
Gọi G là trọng tâm tam giác đều ABC có cạnh bằng a. Mệnh đề nào sau đây là sai?
Cho bất phương trình 2x + 3y − 6 ≤ 0 (1). Chọn khẳng định đúng trong các khẳng định sau:
Hai xạ thủ cùng bắn vào bia. Xác suất người thứ nhất bắn trúng là 80%. Xác suất người thứ hai bắn trúng là 70%. Tính xác suất để cả hai người cùng bắn trúng.
Gieo một con súc sắc cân đối và đồng chất 6 lần độc lập. Tính xác xuất để không lần nào xuất hiện mặt có số chấm là một số chẵn?
Gọi m0 là giá trị thực của tham số m để parabol (P): y = x2 − 2x + 3 − m cắt trục hoành Ox tại hai điểm phân biệt A, B sao cho độ dài đoạn thẳng AB bằng 4. Tìm m0.