Giải phương trình: \[{{\rm{x}}^2} - x + 1 = 2\sqrt {3{\rm{x}} - 1} \].
ĐKXĐ: \(x \ge \frac{1}{3}\)
Ta có: \[{{\rm{x}}^2} - x + 1 = 2\sqrt {3{\rm{x}} - 1} \]
\(\begin{array}{l} \Leftrightarrow {x^2} + 2x + 1 = 3x + 2\sqrt {3x - 1} \\ \Leftrightarrow {(x + 1)^2} = (3x - 1) + 2\sqrt {3x - 1} + 1\\ \Leftrightarrow {(x + 1)^2} = {(\sqrt {3x - 1} + 1)^2}\\ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x + 1 = \sqrt {3x - 1} + 1}\\{x + 1 = - \sqrt {3x - 1} - 1}\end{array}} \right.\end{array}\)
Xét phương trình \(x + 1 = \sqrt {3{\rm{x}} - 1} + 1\)
\( \Leftrightarrow x = \sqrt {3{\rm{x}} - 1} \Leftrightarrow {x^2} = 3{\rm{x}} - 1 \Leftrightarrow {x^2} - 3x + 1 = 0 \Leftrightarrow x = \frac{{3 \pm \sqrt 5 }}{2}\) (thỏa mãn)
Xét phương trình \(x + 1 = - \sqrt {3{\rm{x}} - 1} - 1 \Leftrightarrow x + \sqrt {3{\rm{x}} - 1} + 2 = 0\)
Mà \[x \ge \frac{1}{3};\sqrt {3{\rm{x}} - 1} \ge 0;2 > 0\]
Suy ra \(x + \sqrt {3{\rm{x}} - 1} + 2 > 0\) nên phương trình \(x + 1 = - \sqrt {3{\rm{x}} - 1} - 1\) vô nghiệm
Vậy \(x = \frac{{3 \pm \sqrt 5 }}{2}\).
Trong mặt phẳng α cho tứ giác ABCD, điểm E ∉ (α). Hỏi có bao nhiêu mặt phẳng phân biệt tạo bởi ba trong năm điểm A, B, C, D, E?
Cho tứ diện ABCD. Gọi G là trọng tâm của tam giác BCD. Giao tuyến của mặt phẳng (ACD) và (GAB) là:
Cho hình trụ có các đáy là 2 hình tròn tâm O và O', bán kính đáy bằng chiều cao vào bằng a. Trên đường tròn đáy tâm O lấy điểm A, trên đường tròn tâm O lấy điểm B sao cho AB = 2a. Thể tích khối tứ diện OO'AB theo a là:
Cho tứ giác lồi ABCD và điểm S không thuộc mp(ABCD). Có bao nhiêu mặt phẳng phân biệt xác định bởi 3 trong số các điểm A, B, C, D, S?
Cho hàm số y = f(x) liên tục trên ℝ và có đồ thị như hình vẽ bên:
Số nghiệm thực của phương trình 2f (x2 – 1) – 5 = 0.
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, AB = AD = 2a, CD = a. Gọi I là trung điểm cạnh AD, biết hai mặt phẳng (SBI), (SCI) cùng vuông góc với đáy và thể tích khối chóp S.ABCD bằng \(\frac{{3\sqrt {15} {a^3}}}{5}\). Tính góc giữa hai mặt phẳng (SBC) và (ABCD).
Hai xạ thủ cùng bắn vào một tấm bia. Xác suất người thứ nhất bắn trúng là 80%. Xác suất người thứ hai bắn trúng là 70 %. Xác suất hai người cùng bắn trúng là:
Có hai dãy ghế mỗi dãy xếp 5 nam, 5 nữ vào 2 dãy ghế trên. Có bao nhiêu cách nếu:
a) Nam và nữ được xếp tùy ý.
b) Nam 1 dãy ghế nữ 1 dãy ghế.
Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC vuông tại A, \[{\rm{A}}B = a\sqrt 3 \], AC = AA’ = a. Sin góc giữa đường thẳng AC’ và mặt phẳng (BCC’B’) bằng:
Cho hình chóp S.ABCD. Giao tuyến của hai mặt phẳng (SAB) và (SBC) là đường thẳng:
Tập nghiệm của bất phương trình \(\frac{{{3^x}}}{{{3^x} - 2}} < 3\) là:
Trong không gian cho 4 điểm không đồng phẳng. Có thể xác định được bao nhiêu mặt phẳng phân biệt từ các điểm đã cho?
Gọi S là tập hợp tất cả các giá trị thực của tham số m để giá trị nhỏ nhất của hàm số y = f(x) = 4x2 – 4mx + m2 – 2m trên đoạn [–2; 0] bằng 3. Tính tổng T các phần tử của S.
Trong mp(α), cho bốn điểm A, B, C, D trong đó không có ba điểm nào thẳng hàng. Điểm S ∉ mp(α). Có mấy mặt phẳng tạo bởi S và hai trong số bốn điểm nói trên?