Cho hình nón có đường cao h = 5a và bán kính đáy r = 12a. Gọi (α) là mặt phẳng đi qua đỉnh của hình nón và cắt đường tròn theo dây cũng có độ dài 10a. Tính diện tích thiết diện tạo bởi mặt phẳng (α) và hình nón đã cho.
A. 69a2
B. 120a2
C. 60a2
D. \(\frac{{119{{\rm{a}}^2}}}{2}\).
Đáp án đúng là: C
Gọi S là đỉnh của hình nón và O là tâm của đường tròn đáy
Giả sử mặt phẳng (α) cắt hình nón theo một thiết diện là tam giác SAB cân tại S
Theo giả thiết ta có: SO = 5a, OA = OB = 12a và AB = 10a
Gọi M là trung điểm của AB
Suy ra \(MA = MB = \frac{{AB}}{2} = \frac{{10{\rm{a}}}}{2} = 5{\rm{a}}\)
Tam giác OAB cân tại O có OM là trung tuyến
Suy ra OM là đường cao. Hay OM ⊥ AB
Vì tam giác AOM vuông tại M nên \(O{M^2} = O{A^2} - M{A^2} = 144{{\rm{a}}^2} - 25{{\rm{a}}^2} = 119{{\rm{a}}^2}\)
Vì tam giác SOM vuông tại O nên \[{\rm{S}}M = \sqrt {S{O^2} + O{M^2}} = \sqrt {25{{\rm{a}}^2} + 119{{\rm{a}}^2}} = 12{\rm{a}}\]
Tam giác SAB cân tại S có SM là trung tuyến
Suy ra SM là đường cao
Do đó diện tích tam giác SAB là \[S = \frac{1}{2}SM.AB = \frac{1}{2}.12{\rm{a}}.10{\rm{a}} = 60{a^2}\]
Vậy ta chọn đáp án C.
Trong mặt phẳng α cho tứ giác ABCD, điểm E ∉ (α). Hỏi có bao nhiêu mặt phẳng phân biệt tạo bởi ba trong năm điểm A, B, C, D, E?
Cho tứ diện ABCD. Gọi G là trọng tâm của tam giác BCD. Giao tuyến của mặt phẳng (ACD) và (GAB) là:
Cho tứ giác lồi ABCD và điểm S không thuộc mp(ABCD). Có bao nhiêu mặt phẳng phân biệt xác định bởi 3 trong số các điểm A, B, C, D, S?
Cho hình trụ có các đáy là 2 hình tròn tâm O và O', bán kính đáy bằng chiều cao vào bằng a. Trên đường tròn đáy tâm O lấy điểm A, trên đường tròn tâm O lấy điểm B sao cho AB = 2a. Thể tích khối tứ diện OO'AB theo a là:
Cho hàm số y = f(x) liên tục trên ℝ và có đồ thị như hình vẽ bên:
Số nghiệm thực của phương trình 2f (x2 – 1) – 5 = 0.
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, AB = AD = 2a, CD = a. Gọi I là trung điểm cạnh AD, biết hai mặt phẳng (SBI), (SCI) cùng vuông góc với đáy và thể tích khối chóp S.ABCD bằng \(\frac{{3\sqrt {15} {a^3}}}{5}\). Tính góc giữa hai mặt phẳng (SBC) và (ABCD).
Hai xạ thủ cùng bắn vào một tấm bia. Xác suất người thứ nhất bắn trúng là 80%. Xác suất người thứ hai bắn trúng là 70 %. Xác suất hai người cùng bắn trúng là:
Có hai dãy ghế mỗi dãy xếp 5 nam, 5 nữ vào 2 dãy ghế trên. Có bao nhiêu cách nếu:
a) Nam và nữ được xếp tùy ý.
b) Nam 1 dãy ghế nữ 1 dãy ghế.
Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC vuông tại A, \[{\rm{A}}B = a\sqrt 3 \], AC = AA’ = a. Sin góc giữa đường thẳng AC’ và mặt phẳng (BCC’B’) bằng:
Cho hình chóp S.ABCD. Giao tuyến của hai mặt phẳng (SAB) và (SBC) là đường thẳng:
Gọi S là tập hợp tất cả các giá trị thực của tham số m để giá trị nhỏ nhất của hàm số y = f(x) = 4x2 – 4mx + m2 – 2m trên đoạn [–2; 0] bằng 3. Tính tổng T các phần tử của S.
Tập nghiệm của bất phương trình \(\frac{{{3^x}}}{{{3^x} - 2}} < 3\) là:
Trong không gian cho 4 điểm không đồng phẳng. Có thể xác định được bao nhiêu mặt phẳng phân biệt từ các điểm đã cho?
Trong mp(α), cho bốn điểm A, B, C, D trong đó không có ba điểm nào thẳng hàng. Điểm S ∉ mp(α). Có mấy mặt phẳng tạo bởi S và hai trong số bốn điểm nói trên?