A. ΔABC và ΔABE;
B. ΔABE và ΔADE;
C. ΔAME và ΔABE;
Hướng dẫn giải:
Đáp án đúng là: D
Gọi M là trung điểm của BC. Suy ra MB = MC.
Xét ΔBMD và ΔCME có:
BD = CE (giả thiết);
(cặp góc so le trong của Bx // AC);
MB = MC
Do đó ΔBMD = ΔCME (c.g.c).
Suy ra MD = ME (hai cạnh tương ứng) và (hai góc tương ứng)
Ta có (kề bù).
Do đó suy ra D, M, E thẳng hàng.
Ta có ba điểm D, M, E thẳng hàng và MD = ME nên M là trung điểm của DE.
Khi đó ΔABC và ΔADE chung đỉnh A, chung đường trung tuyến AM nên trọng tâm G của hai tam giác này trùng nhau.
Cho ΔABC có đường trung tuyến BM. Trên tia BM lấy hai điểm G, K sao cho và G là trung điểm của BK. Gọi E là trung điểm CK; GE cắt AC tại I. Số thích hợp để điền vào chỗ trống CI = … AC là:
Cho ΔABC. Trên tia đối của tia BC lấy điểm E, trên tia đối của tia CB lấy điểm F sao cho BE = CF. Gọi G là trọng tâm tam giác ABC. Tia AG cắt BC tại M. Khẳng định nào sau đây là đúng?
Cho hai đoạn thẳng AC và BD cắt nhau tại trung điểm O của mỗi đoạn. Gọi M, N lần lượt là trung điểm của BC, CD. Đoạn thẳng AM, AN cắt BD lần lượt tại I và K. Khẳng định nào sau đây là đúng?
Cho tam giác ΔABC có đường trung tuyến AD, trên đoạn thẳng AD lấy điểm E và F sao cho AE = EF = FD. Điểm F là:
Cho ∆ABC, điểm M thuộc cạnh BC sao cho BM = 2MC. Trên tia đối của tia CA lấy điểm D sao cho CD = CA. Gọi E là giao điểm của AM và BD. Khi đó điểm M là
Cho ∆ABC có AD, BE, CF là ba đường trung tuyến cắt nhau tại G. Cho các phát biểu sau:
(I)
(II) AD + BE + CF < AB + BC + AC.
Chọn khẳng định đúng:
Cho ΔABC có đường trung tuyến BM. Trên tia BM lấy hai điểm G, K sao cho và G là trung điểm của BK. Gọi E là trung điểm của CK, GE cắt AC tại I. Điểm I là trọng tâm của tam giác nào?
Cho tam giác ABC, trên đường trung tuyến AD. Gọi G là điểm nằm giữa A và D sao cho Tia BG cắt AC tại E, tia CG cắt AB tại F. Khẳng định nào sau đây sai?
Cho hình vẽ như bên dưới. Biết AM = 12 cm.
Độ dài của đoạn thẳng AG là