Cho dãy số (un) được xác định như sau: . Số hạng u11 là
Đáp án đúng là: D
Ta tính được u2 =
Ta có:
un + 1.(n + 1) = (un + 1).n = n + un.n;
un.n = (un – 1 + 1).(n – 1);
…
u2.2 = (u1 + 1).1 = 1 + u1.1
Þ un + 1.(n + 1) = n + (u n – 1 + 1).(n – 1) = n + (n – 1) + u n – 1.(n – 1);
un-1.(n – 1) = (n – 2) + (n – 3) + un – 3.(n – 3);
…
u4.4 = 3 + 2 + u2.2 = 3 + 2 + 1;
u3.3 = 2 + 1 + u1.1 = 2 + 1;
+) Nếu n + 1 chia hết cho 2 thì
un + 1.(n + 1) = n + (n – 1) + (n – 2) + … + 2 + 1 = .
Suy ra .
+) Nếu n + 1 không chia hết cho 2 thì:
un + 1.(n + 1) = n + (n – 1) + (n – 2) + … + 3 + 2 + 1 = .
Suy ra .
Suy ra công thức tổng quát đúng với cả 2 trường hợp.
Vậy số hạng thứ 11 của dãy là: .
Cho dãy số (un) được xác định như sau: . Công thức tổng quát của dãy số là
Cho dãy số (un) biết: u1 = 2; un + 1 = un + 2. Số hạng thứ 7 của dãy số là
Cho dãy số (un) với u1 = 2 và un + 1 = 4un. Số hạng có giá trị lớn nhất của un mà nhỏ hơn 1000 là
Cho dãy số hữu hạn (un): 1, 4, 9, 16, 25. Khẳng định nào dưới đây đúng?