Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = 2a, AD = a, DSAD đều và nằm trong mặt phẳng vuông góc với mặt đáy. Gọi j là góc phẳng nhị diện [S, BC, A]. Khẳng định nào sau đây là đúng?
A. j = 60°;
Đáp án đúng là: B
Gọi H, K lần lượt là trung điểm của AD, BC.
Vì DSAD đều nên SH ^ AD mà (SAD) ^ (ABCD) ⇒ SH ^ (ABCD) ⇒ SH ^ BC.
Lại có HK ^ BC nên BC ^ (SHK) ⇒ BC ^ SK.
Ta có: .
Vì DSAD đều cạnh a nên và HK = AB = 2a
Xét DSHK vuông tại H, ta có:
.
Cho hình chóp tứ giác S.ABCD có đáy là hình chữ nhật với AB = 4a, AD = 3a. Các cạnh bên đều có độ dài 5a. Góc nhị diện [S, BC, A] có số đo là
Cho hình chóp S.ABC có đáy ABC vuông cân tại B, AB = BC = a, , SA ^ (ABC). Số đo của góc phẳng nhị diện [S, BC, A] là
Cho hình chóp đều S.ABCD có tất cả các cạnh đều bằng a. Gọi j là góc phẳng nhị diện [B, SD, C]. Mệnh đề nào sau đây là đúng?
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt đáy và . Khi đó số đo của góc phẳng nhị diện [S, BD, A] là
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc nhau và , OA = a. Tính số đo của góc phẳng nhị diện [O, BC, A].
Hình chóp đều S.ABCD có tất cả các cạnh bằng a. Tính cosin của góc phẳng nhị diện [S, BC, A].
Cho hình chóp S.ABCD có đáy ABCD là hình vuông, cạnh bên SA vuông góc với mặt phẳng đáy. Góc phẳng nhị diện [S, BC, A] là
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, chiều cao hình chóp bằng . Số đo của góc phẳng nhị diện [S, BC, A] bằng
Cho hình chóp S.ABC có SA ^ (ABC), đáy ABC là tam giác đều cạnh a và . Tính số đo góc phẳng nhị diện [S, BC, A].