Chị Hà gửi vào ngân hàng \(20\,\,000\,\,000\) đồng với lãi suất \[0,5\% \]/tháng (sau mỗi tháng tiền lãi được nhập vào tiền gốc để tính lãi tháng sau). Hỏi sau \[1\] năm chị Hà nhận được bao nhiêu tiền, biết trong \[1\] năm đó chị Hà không rút tiền lần nào và lãi suất không thay đổi (làm tròn đến hàng nghìn).
Đáp án C
Một đội văn nghệ có 4 học sinh nam và 5 học sinh nữ. Tính xác suất chọn ra một đội tốp ca gồm 3 học sinh sao cho có cả nam và nữ cùng tham gia.
Với \(a\) là số thực dương tùy ý, \({\log _3}\left( {9a} \right)\) bằng
Cho góc nhị diện \(\left[ {P,\,\,d,\,\,Q} \right]\) có số đo là \(\alpha \). Khi đó \(\alpha \) thỏa mãn
Tìm hiểu thời gian chạy cự li 1000 m (đơn vị: giây) của các bạn học sinh trong một lớp thu được kết quả sau:
Thời gian (giây) chạy trung bình cự li 1000 m của các bạn học sinh là
Với điều kiện nào của \(a,\,b\) thì khẳng định \({\log _a}b = \alpha \Leftrightarrow {a^\alpha } = b\) là đúng?
Cho hai biến cố \(A\) và \[B\]. Ta có \(A\) và \[B\] được gọi là hai biến cố xung khắc khi
Với \(a\) là số thực dương tùy ý, \(\sqrt {{a^3}} \) bằng kết quả nào sau đây?
Một hộp có 52 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số từ 1 đến 52; hai thẻ khác nhau thì ghi hai số khác nhau. Rút ngẫu nhiên 1 chiếc thẻ trong hộp. Xét biến cố \(A\): “Số xuất hiện trên thẻ được rút ra là số chia hết cho 3” và biến cố \(B\): “Số xuất hiện trên thẻ được rút ra là số chia hết cho 4”. Biến cố giao của hai biến cố \(A\) và \(B\) được phát biểu là:
Cho hai biến cố \(A\) và \(B\). Biến cố hợp của \(A\) và \(B\) có thể phát biểu dưới dạng mệnh đề nêu sự kiện là
Cho \[\log 3 = a,\,\,\log 2 = b\]. Khi đó giá trị của \[{\log _{125}}30\] được tính theo \(a\) là
Cho hai biến cố \(A\) và \[B\] độc lập với nhau. Phát biểu nào sau đây là đúng?