Để kiểm tra thời gian sử dụng của quạt tích điện, Hằng thống kê thời gian sử dụng quạt của mình từ lúc sạc đầy pin cho đến khi hết pin ở bảng sau:
Thời gian sử dụng (giờ) |
$\left[ {7;\,9} \right)$ |
$\left[ {9;\,11} \right)$ |
$\left[ {11;13} \right)$ |
$\left[ {13;15} \right)$ |
$\left[ {15;17} \right)$ |
Số lần |
2 |
5 |
7 |
5 |
1 |
a) Hãy ước lượng thời gian sử dụng trung bình từ lúc Hằng sạc đầy quạt cho tới khi hết pin.
b) Hằng cho rằng có khoảng 25% số lần sạc pin quạt chỉ dùng được dưới 10 giờ. Nhận định của Hằng có hợp lí không?a) Thời gian sử dụng trung bình từ lúc Hằng sạc đầy pin quạt cho tới khi hết pin là:
$\overline x = \frac{{2.8 + 5.10 + 7.12 + 5.14 + 1.16}}{{20}} = 11,8$ (giờ).
b) Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là
${Q_1} = 9 + \frac{{\frac{{20}}{4} - 2}}{5}.\left( {11 - 9} \right) = 10,2$.
Do ${Q_1}$ gần với 10 nên nhận định của Hằng là hợp lí.
Cho 2 cấp số cộng hữu hạn, mỗi cấp số cộng có 100 số hạng: \[4,7,10,13,16,...\] và \[1,6,11,16,21,...\]. Hỏi có tất cả bao nhiêu số có mặt trong cả 2 cấp số trên.
Cho cấp số nhân $\left( {{u_n}} \right)$ có ${u_1} = 24$ và $\frac{{{u_4}}}{{{u_{11}}}} = 16384$. Số hạng ${u_{17}}$ là
Cho \[\tan \alpha = - \frac{4}{5}\] với \[\frac{{{\text{3}}\pi }}{{\text{2}}} < \alpha < 2\pi \]. Khi đó
Cho dãy số $\left( {{u_n}} \right)$ với \[{u_n} = \frac{3}{2}{.5^n}\]. Khẳng định nào sau đây là đúng?
Trung vị của mẫu số liệu ghép nhóm trên Câu 34 gần nhất với giá trị nào dưới đây.
Cho mẫu số liệu ghép nhóm sau:
Nhóm |
$\left[ {0;2} \right)$ |
$\left[ {2;4} \right)$ |
$\left[ {4;6} \right)$ |
$\left[ {6;8} \right)$ |
$\left[ {8;10} \right)$ |
$\left[ {10;12} \right)$ |
$\left[ {12;14} \right)$ |
Tần số |
5 |
10 |
40 |
20 |
16 |
3 |
6 |
Mệnh đề nào dưới đây là đúng?
Cho cấp số cộng $\left( {{u_n}} \right)$ biết ${u_5} = 18$ và $4{S_n} = {S_{2n}}$. Số hạng đầu ${u_1}$ và công sai $d$ là
Hàm số $y = A\sin \omega t$ $\left( {\omega \ne 0} \right)$ là hàm số tuần hoàn với chu kì
Biểu thức \[A = \frac{{2{{\cos }^2}2\alpha + \sqrt 3 \sin 4\alpha - 1}}{{2{{\sin }^2}2\alpha + \sqrt 3 \sin 4\alpha - 1}}\] có kết quả rút gọn là
Giả sử các đẳng thức đều có nghĩa. Đẳng thức sai trong các đẳng thức sau là
Giá trị nhỏ nhất và giá trị lớn nhất của hàm số $y = 7 - 2\cos \left( {x + \frac{\pi }{4}} \right)$ lần lượt là