Cho dãy số $\left( {{u_n}} \right)$, biết \[{u_n} = \frac{{2n + 1}}{{n + 2}}\]. Viết năm số hạng đầu của dãy số.
B. ${u_1} = 1;{u_2} = \frac{5}{4};{u_3} = \frac{7}{5};{u_4} = \frac{3}{2};{u_5} = \frac{{11}}{7}$.
D. ${u_1} = 1;{u_2} = \frac{5}{4};{u_3} = \frac{7}{5};{u_4} = \frac{7}{2};{u_5} = \frac{{11}}{3}$.
Chọn B
Cho cấp số nhân $\left( {{u_n}} \right)$ biết ${u_1} = 12;\frac{{{u_3}}}{{{u_8}}} = 243$. Tìm ${u_9}$.
Cho cấp số nhân $\frac{1}{2};\frac{1}{4};\frac{1}{8};...;\frac{1}{{4096}}$. Hỏi số $\frac{1}{{4096}}$ là số hạng thứ mấy trong cấp số nhân đã cho?
Cho các mệnh đề sau:
1) Hai đường thẳng song song thì đồng phẳng.
2) Hai đường thẳng không có điểm chung thì chéo nhau.
3) Hai đường thẳng chéo nhau thì không có điểm chung.
4) Hai đường thẳng chéo nhau thì không đồng phẳng.
Có bao nhiêu mệnh đề đúng?
Trên đường tròn lượng giác, gọi $M\left( {{x_0};{y_0}} \right)$ là điểm biểu diễn cho góc lượng giác có số đo $\alpha $. Mệnh đề nào đúng trong các mệnh đề sau?
Cho dãy số $\left( {{u_n}} \right)$ thỏa mãn $\left| {{u_n} - 2} \right| < \frac{1}{{{n^3}}}$ với mọi $n \in {\mathbb{N}^*}$. Khi đó
Cho hàm số $y = f\left( x \right)$ có đồ thị là hình vẽ dưới đây
Khẳng định nào sau đây đúng?
Cho cấp số nhân $\left( {{u_n}} \right)$ có ${u_n} = 81$ và ${u_{n + 1}} = 9$. Mệnh đề nào sau đây đúng?
Cho tam giác $ABC$ ở trong mặt phẳng $\left( \alpha \right)$ và phương $l$. Biết hình chiếu (theo phương $l$) của tam giác $ABC$ lên mặt phẳng $\left( P \right)$ là một đoạn thẳng. Khẳng định nào sau đây đúng?
Cho một cấp số cộng $\left( {{u_n}} \right)$ có ${u_1} = \frac{1}{3};{u_8} = 26$. Tìm công sai $d$.