Đọc đoạn trích sau đây và trả lời câu hỏi:
Sáng hôm sau, đúng 7 giờ thì cất đám. Hai viên cảnh sát thuộc bộ thứ 18 là Min Ðơ và Min Toa đã được thuê giữ trật tự cho đám ma. Giữa lúc không có ai đáng phạt mà phạt, đương buồn rầu như những nhà buôn sắp vỡ nợ, mấy ông cảnh binh này được có đám thuê thì sung sướng cực điểm, đã trông nom rất hết lòng. Thành thử tang gia ai cũng vui vẻ cả, trừ một Tuyết. Tại sao Xuân lại không đến phúng viếng gì cả. Tại sao Xuân lại không đi đưa? Hay là Xuân khinh mình? Những câu hỏi ấy đã khiến Tuyết đau khổ một cách rất chính đáng, có thể muốn tự tử được. Tìm kiếm khắp mặt trong bọn người đi đưa đám ma cũng không thấy “bạn giai” đâu cả, Tuyết như bị kim châm vào lòng.
(Hạnh phúc của một tang gia – Vũ Trọng Phụng)
Phong cách nghệ thuật của đoạn trích là phong cách trào phúng bậc thầy. Một phong cách đặc trưng của nhà văn Vũ Trọng Phụng. Chọn B.
Một xe khách đi từ Việt Trì về Hà Nội chở tối đa 60 hành khách một chuyến. Nếu một chuyến chở được \(m\) hành khách thì giá tiền cho mỗi hành khách được tính là \({\left( {30 - \frac{{5m}}{2}} \right)^2}\) đồng. Tính số hành khách trên mỗi chuyến xe để nhà xe thu được lợi nhuận của mỗi chuyến xe là lớn nhất.
Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \(\left( {x + 1} \right)\left( {x - 3} \right) + \sqrt {8 + 2x - {x^2}} = 2m\) có nghiệm?
Trên mặt phẳng tọa độ \[Oxy,\] cho hình bình hành \[ABCD\] có phương trình đường thẳng \[AB\] là \(2x + y + 7 = 0\), phương trình đường thẳng \[AD\] là \(x - 4y - 1 = 0\) và giao điểm của hai đường chéo \[AC,\,\,BD\] là \[I\left( {1\,;\,\,2} \right).\] Phương trình của đường thẳng \[BC\] là
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ. Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \(f\left( {{x^3} - 3x} \right) = m\) có 6 nghiệm thuộc đoạn \(\left[ { - 1\,;\,\,2} \right]?\)
Đồ thị nào dưới đây biểu diễn đúng sự biến đổi nồng độ các chất theo thời gian của phản ứng A + 2B → C?
Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình chữ nhật, \(AB = \sqrt 3 \,,\,\,BC = 1\) và các cạnh bên của hình chóp cùng bằng \(\sqrt 5 .\) Gọi \(M\) là trung điểm của \[SC.\] Tính khoảng cách từ \(M\) đến mặt phẳng \(\left( {ABCD} \right)\).
Cho một tấm nhôm hình vuông cạnh 1m như hình sau:
Người ta cắt phần tô đậm của tấm nhôm rồi gập thành một hình chóp tứ giác đều có cạnh đáy bằng x (m). Tìm giá trị của x để khối chóp nhận được có thể tích lớn nhất (kết quả làm tròn đến hàng phần trăm).
Cho sơ đồ sự phân li của \({\rm{NaCl}}\) trong môi trường \({{\rm{H}}_2}{\rm{O}}\):
Cho các phát biểu:
(a) Các phân tử \({{\rm{H}}_2}{\rm{O}}\) có tương tác với các ion.
(b) \({{\rm{H}}_2}{\rm{O}}\) là một chất phân cực, nguyên tử \({\rm{H}}\) mang một phần điện tích âm, nguyên tử O mang một phần điện tích dương.
(c) Các phân tử \({{\rm{H}}_2}{\rm{O}}\) sẽ kéo ion ra khỏi cấu trúc tinh thể \({\rm{NaCl}}\).
(d) Các phân tử \({{\rm{H}}_2}{\rm{O}}\) sẽ bao quanh các ion \({\rm{N}}{{\rm{a}}^ + }\)và \({\rm{C}}{{\rm{l}}^ - }.\)
Trong các phát biểu trên, số phát biểu đúng là
Trong không gian \[Oxyz,\] cho điểm \[A\left( {1\,;\,\,1\,;\,\, - 2} \right)\] và mặt phẳng \((P):2x + 2y + z + 1 = 0.\) Gọi \(M\) là điểm bất kì thuộc \((P)\), độ dài nhỏ nhất của đoạn thẳng \[AM\] là
Trên mặt phẳng toạ độ \[Oxy,\] tập hợp biểu diễn số phức \(z\) thỏa mãn \[\left| {{{\left| z \right|}^2} - z\left( {\bar z + i} \right) - i} \right| = 3\] là đường tròn \((C).\) Khoảng cách từ tâm \(I\) của đường tròn \((C)\) đến trục tung bằng
Xác định một từ/ cụm từ SAI về mặt ngữ pháp/ hoặc ngữ nghĩa/ logic/ phong cách.
Trong xã hội ta, không ít người sống ích kỉ, không giúp đỡ bao che cho người khác.