Trên đoạn \(\left[ {1;\,\,5} \right]\), giá trị lớn nhất của hàm số \[f\left( x \right) = \sqrt {11 - 2x} \] bằng
Đáp án đúng là: A
Tập xác định của hàm số là \(\left( { - \infty ;\frac{{11}}{2}} \right]\). Do đó, hàm số \[f\left( x \right) = \sqrt {11 - 2x} \] liên tục và xác định trên đoạn \(\left[ {1;\,\,5} \right]\).
Ta có: \(f'\left( x \right) = \frac{{ - 1}}{{\sqrt {11 - 2x} }}\); \(f'\left( x \right) < 0\,\,\forall x \in \left[ {1;\,5} \right]\).
Từ đó suy ra \(\mathop {\max }\limits_{\left[ {1;\,5} \right]} f\left( x \right) = f\left( 1 \right) = \sqrt {11 - 2} = 3\).
Một chiếc ô tô được đặt trên mặt đáy dưới của một khung sắt có dạng hình hộp chữ nhật với đáy trên là hình chữ nhật \(ABCD\), mặt phẳng \(\left( {ABCD} \right)\) song song với mặt phẳng nằm ngang. Khung sắt đó được buộc vào móc \(E\) của chiếc cần cẩu sao cho các đoạn dây cáp \(EA,\,EB,\,EC,\,ED\) có độ dài bằng nhau và cùng tạo với mặt phẳng \(\left( {ABCD} \right)\) một góc bằng \(60^\circ \). Chiếc cần cẩu kéo khung sắt lên theo phương thẳng đứng.
Trọng lượng của chiếc xe ô bằng bao nhiêu Newton (làm tròn kết quả đến hàng đơn vị)? Biết rằng các lực căng \(\overrightarrow {{F_1}} ,\,\overrightarrow {{F_2}} ,\,\overrightarrow {{F_3}} ,\,\overrightarrow {{F_4}} \) đều có cường độ là \(4\,500\) N và trọng lượng của khung sắt là \(2\,700\) N.
PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.
Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\). Biết hàm số \(y = f'\left( x \right)\) có đồ thị như hình vẽ dưới đây.
Hàm số \(g\left( x \right) = f\left( x \right) + x\) đạt cực tiểu tại điểm \(x\) bằng bao nhiêu?
Cho hàm số \[y = f\left( x \right)\] có bảng xét dấu đạo hàm \(y'\) như sau:
Hàm số đã cho nghịch biến trên khoảng nào trong các khoảng dưới đây?
Cho hình lăng trụ \(ABC.A'B'C'\), \(M\) là trung điểm của \(BB'\). Đặt \(\overrightarrow {CA} = \overrightarrow a \), \(\overrightarrow {CB} = \overrightarrow b \), \(\overrightarrow {AA'} = \overrightarrow c \). Khẳng định nào sau đây đúng?
Cho hàm số \[y = f\left( x \right)\] có đồ thị như hình dưới đây.
Giá trị cực đại của hàm số đã cho bằng
Cho hàm số \[y = f\left( x \right)\] có bảng biến thiên như hình vẽ sau:
Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là
Cho hàm số \(y = \frac{{a{x^2} + bx + c}}{{mx + n}}\) (với \(a,\,m \ne 0\)) có đồ thị là đường cong như hình dưới đây.
Tiệm cận xiên của đồ thị hàm số là đường thẳng
Cho đồ thị hàm số \(y = \frac{{ax + b}}{{cx + d}}\) (với \(c \ne 0\)) có đồ thị như hình dưới đây.
Biết rằng \(a\) là số thực dương, hỏi trong các số \(b,c,d\) có bao nhiêu số dương?
Cho hình lăng trụ tam giác đều \(ABC.A'B'C'\) có \(AB = a\) và \(AA' = a\sqrt 2 \). Số đo góc giữa hai vectơ \(\overrightarrow {AB'} \) và \(\overrightarrow {BC'} \) bằng bao nhiêu độ?
Đồ thị hàm số \(y = - {x^3} - x + 2\) là đường cong nào trong các đường cong sau?
Cho hình chóp tứ giác \(S.ABCD\).
Trong các vectơ có điểm đầu và điểm cuối phân biệt thuộc tập hợp các đỉnh của hình chóp tứ giác, có bao nhiêu vectơ có giá nằm trong mặt phẳng \(\left( {SCD} \right)\)?
Cho hàm số \(y = \frac{{3x + 1}}{{1 - x}}\). Phát biểu nào sau đây là đúng?
Đồ thị của hàm số trên cắt trục hoành tại bao nhiêu điểm?
Cho hàm số \(y = f\left( x \right) = \frac{{2x - 1}}{{x + 1}}\) có đồ thị là \(\left( C \right)\).
a) Hàm số đã cho nghịch biến trên từng khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( { - 1; + \infty } \right)\).
b) Hàm số đã cho không có cực trị.
c) \(\left( C \right)\) có tiệm cận đứng là đường thẳng \(x = - 1\), tiệm cận ngang là đường thẳng \(y = 2\).
d) Biết rằng trên \(\left( C \right)\) có 2 điểm phân biệt mà các tiếp tuyến của \(\left( C \right)\) tại các điểm đó song song với đường thẳng \(y = x\). Gọi \(k\) là tổng hoành độ của hai điểm đó, khi đó \(k\) là một số chính phương.
Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có \(AB = AD = 1\) và \(AA' = 2\).
a) \(\overrightarrow {AD'} = \overrightarrow {BC'} \).
b) \(\left| {\overrightarrow {BD} } \right| = \left| {\overrightarrow {CD'} } \right| = \sqrt 2 \).
c) \(\overrightarrow {AC'} + \overrightarrow {CA'} + 2\overrightarrow {C'C} = \overrightarrow 0 \).
d) \(\overrightarrow {AD} \cdot \overrightarrow {A'B'} = 2\).