PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho hàm số xác định trên và có bảng biến thiên như sau:
a) Hàm số đồng biến trên mỗi khoảng và .
b) Số điểm cực trị của hàm số đã cho là .
c) Hàm số có giá trị nhỏ nhất bằng .
d) Đồ thị hàm số không có đường tiệm cận.
a) S, b) Đ, c) Đ, d) Đ.
Hướng dẫn giải
– Quan sát bảng biến thiên, ta thấy hàm số đã cho đồng biến trên mỗi khoảng và , do đó ý a) sai.
– Ta có đổi dấu từ “–” sang “+” tại các điểm , và đổi dấu từ “+” sang “–” tại điểm . Vậy hàm số có 3 điểm cực trị nên ý b) đúng.
– Hàm số có giá trị nhỏ nhất bằng tại và nên ý c) đúng.
– Hàm số xác định trên và nên đồ thị hàm số này không có đường tiệm cận. Vậy ý d) đúng.
Có ba lực cùng tác động vào một cái bàn như hình vẽ dưới. Trong đó hai lực tạo với nhau một góc và có độ lớn lần lượt là 9 N và 4 N, lực vuông góc với mặt phẳng tạo bởi hai lực và có độ lớn 7 N. Độ lớn hợp lực của ba lực trên là bao nhiêu Newton (làm tròn kết quả đến hàng đơn vị của Newton)?
Người ta giăng lưới để nuôi riêng một loại cá trên một góc hồ. Biết rằng lưới được giăng theo một đường thẳng từ một vị trí trên bờ ngang đến một vị trí trên bờ dọc và phải đi qua một cái cọc đã cắm sẵn ở vị trí . Diện tích nhỏ nhất có thể giăng lưới là bao nhiêu mét vuông, biết rằng khoảng cách từ cọc đến bờ ngang là 5 m và khoảng cách từ cọc đến bờ dọc là 12 m.
Cho hàm số có đồ thị như hình vẽ.
Trong các số có bao nhiêu số có giá trị dương?
PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.
Cho hàm số có đồ thị như hình dưới đây.
Phát biểu nào sau đây là đúng?
PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.
Cho hàm số liên tục trên và có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Cho hàm số liên tục trên và có đồ thị như hình dưới đây.
Phát biểu nào sau đây là đúng?
Cho hàm số có đồ thị như hình dưới đây.
Giá trị nhỏ nhất của hàm số đã cho trên đoạn là:
Cho hàm số có đồ thị như hình dưới đây.
Tâm đối xứng của đồ thị hàm số có tọa độ là
Cho hàm số .
a) Hàm số đã cho nghịch biến trên .
b) Hàm số đã cho đạt cực đại tại .
c) Đồ thị hàm số cắt trục tung tại điểm có tọa độ là .
d) Đồ thị hàm số đã cho không đi qua gốc tọa độ.