Thể tích \(V\) (đơn vị: cm3) của 1 kg nước tại nhiệt độ \(T\left( {0^\circ C \le T \le 30^\circ C} \right)\) được tính bởi công thức sau: \(V(T) = 999,87 - 0,06426T + 0,0085043{T^2} - 0,0000679{T^3}.\) (Nguồn: J. Stewart, Calculus, Steventh Edition, Brooks/Cole, CENGAGE Learning 2012).
Hỏi thể tích \(V\left( T \right)\),\(\left( {0^\circ C \le T \le 30^\circ C} \right)\), giảm trong khoảng nhiệt độ gần với khoảng nào sau đây?
Đáp án đúng là: B
Ta có: \(V(T) = 999,87 - 0,06426T + 0,0085043{T^2} - 0,0000679{T^3}.\)
\( \Rightarrow V'\left( T \right) = - 0,06426 + 0,0170086T - 2,{037.10^{ - 4}}{T^2}\)
\(V'\left( T \right) = 0 \Leftrightarrow - 2,{037.10^{ - 4}}{T^2} + 0,0170086T - 0,06426 = 0\) \( \Leftrightarrow \left[ \begin{array}{l}T \approx 79,53\,\,\,\,(L)\\T \approx 3,97\,\,\,\,\,(TM)\end{array} \right.\).
Ta có bảng xét dấu như sau:
Vậy thể tích giảm khi \(T \in \left( {0^\circ C;3,97^\circ C} \right)\).
Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\).
Mệnh đề nào sau đây là sai?
Cho hàm số \[y = f\left( x \right)\] có bảng biến thiên như sau:
Hàm số đã cho đồng biến trên khoảng nào dưới đây?