Đáp án đúng là: A
Ta có: \[y = \;\frac{{2{x^2} + 3x + 3}}{{x + 1}}\] \( \Rightarrow y' = \frac{{2{x^2} + 4x}}{{{{\left( {x + 1} \right)}^2}}}\).
\(y' = 0 \Leftrightarrow \frac{{2{x^2} + 4x}}{{{{\left( {x + 1} \right)}^2}}} = 0\)\( \Leftrightarrow \left[ \begin{array}{l}x = 0 \in \left[ {0;2} \right]\\x = - 2 \notin \left[ {0;2} \right]\end{array} \right.\).
Xét trên đoạn \(\left[ {0;2} \right]\), ta tính được các giá trị \(y\left( 0 \right) = 3,y\left( 2 \right) = \frac{{17}}{3}\).
Vậy \(M = \frac{{17}}{3},m = 3.\)
Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\).
Mệnh đề nào sau đây là sai?
Cho hàm số \[y = f\left( x \right)\] có đồ thị hàm số như hình vẽ dưới đây.
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?