Thứ sáu, 22/11/2024
IMG-LOGO

Câu hỏi:

26/10/2024 10

Một chiếc ô tô được đặt trên mặt đáy dưới của một khung sắt có dạng hình hộp chữ nhật với đáy trên là hình chữ nhật \(ABCD\), mặt phẳng \(\left( {ABCD} \right)\) song song với mặt phẳng nằm ngang. Khung sắt đó được buộc vào móc \(E\) của chiếc cần cẩu sao cho các đoạn dây cáp \(EA,\,EB,\,EC,\,ED\) có độ dài bằng nhau và cùng tạo với mặt phẳng \(\left( {ABCD} \right)\) một góc bằng \(60^\circ \). Chiếc cần cẩu kéo khung sắt lên theo phương thẳng đứng.

Trọng lượng của chiếc xe ô bằng bao nhiêu Newton (làm tròn kết quả đến hàng đơn vị)? Biết rằng các lực căng \(\overrightarrow {{F_1}} ,\,\overrightarrow {{F_2}} ,\,\overrightarrow {{F_3}} ,\,\overrightarrow {{F_4}} \) đều có cường độ là \(4\,500\) N và trọng lượng của khung sắt là \(2\,700\) N.

Trả lời:

verified Giải bởi Vietjack

Gọi \[{A_1},\,{B_1},\,{C_1},\,{D_1}\] lần lượt là các điểm sao cho \(\overrightarrow {E{A_1}}  = \overrightarrow {{F_1}} ,\,\,\overrightarrow {E{B_1}}  = \overrightarrow {{F_2}} ,\,\,\overrightarrow {E{C_1}}  = \overrightarrow {{F_3}} ,\,\overrightarrow {E{D_1}}  = \overrightarrow {{F_4}} \).

Do các lực căng \(\overrightarrow {{F_1}} ,\,\overrightarrow {{F_2}} ,\,\overrightarrow {{F_3}} ,\,\overrightarrow {{F_4}} \) đều có cường độ là \(4\,500\) N nên

\(\left| {\overrightarrow {{F_1}} } \right| = \left| {\overrightarrow {{F_2}} } \right| = \left| {\overrightarrow {{F_3}} } \right| = \left| {\overrightarrow {{F_4}} } \right| = 4\,500\) (N).

Gọi \(O\) là tâm của hình chữ nhật \({A_1}{B_1}{C_1}{D_1}\). Khi đó, \(O\) là trung điểm của \({A_1}{C_1}\)\({B_1}{D_1}\).

Sử dụng quy tắc trung điểm ta có: \(\overrightarrow {{F_1}}  + \overrightarrow {{F_3}}  = 2\overrightarrow {EO} \)\(\overrightarrow {{F_2}}  + \overrightarrow {{F_4}}  = 2\overrightarrow {EO} \).

Suy ra \(\overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  + \overrightarrow {{F_3}}  + \overrightarrow {{F_4}}  = 4\overrightarrow {EO} \).

Mặt khác, do các cạnh \(EA,\,EB,\,EC,\,ED\) tạo với mặt phẳng \(\left( {ABCD} \right)\) một góc bằng \(60^\circ \) nên \(\widehat {E{A_1}O} = \widehat {E{B_1}O} = \widehat {E{C_1}O} = \widehat {E{D_1}O} = 60^\circ \), do đó tam giác \(E{A_1}{C_1}\) là tam giác đều cạnh \(4\,500\) (N) với đường cao \(EO = 2\,250\sqrt 3 \) (N).

Do khung sắt ở vị trí cân bằng nên \(\overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  + \overrightarrow {{F_3}}  + \overrightarrow {{F_4}}  = \overrightarrow P \) với \(\overrightarrow P \) là trọng lực tác dụng lên chiếc xe ô tô và khung sắt. Ta tính được tổng trọng lực có độ lớn là \(4\left| {\overrightarrow {EO} } \right| = 9\,000\sqrt 3 \) (N).

Vậy trọng lượng của ô tô bằng \(9\,000\sqrt 3  - 2\,700 \approx 12\;888\) (N).

Đáp số: \(12\,888\).

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \(y = \frac{{a{x^2} + bx + c}}{{mx + n}}\) (với \(a,\,m \ne 0\)) có đồ thị là đường cong như hình dưới đây. 

Tiệm cận xiên của đồ thị hàm số là đường thẳng

Xem đáp án » 26/10/2024 13

Câu 2:

Cho tứ diện \(ABCD\). Gọi \[I,\,J\] lần lượt là trung điểm của \(AB\)\(CD\), \(G\) là trung điểm của \(IJ\) (tham khảo hình vẽ).  

a) \(\overrightarrow {GI}  + \overrightarrow {JG}  = \overrightarrow 0 \).

b) \(\overrightarrow {AC}  + \overrightarrow {BD}  = 2\overrightarrow {IJ} \).

c) \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD}  = \overrightarrow 0 \).

d) \(\left| {\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  + \overrightarrow {MD} } \right|\) nhỏ nhất khi \(M \equiv G\).

Xem đáp án » 26/10/2024 12

Câu 3:

PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.

Cho hàm số \[y = f\left( x \right)\] có bảng xét dấu đạo hàm \(y'\) như sau:

Hàm số đã cho nghịch biến trên khoảng nào trong các khoảng dưới đây?

Xem đáp án » 26/10/2024 11

Câu 4:

Cho hàm số \(y = {e^x}\left( {{x^2} - 3} \right)\), gọi \(M = \frac{a}{{{e^b}}}\,\,\left( {a,\,b \in \mathbb{N}} \right)\) là giá trị lớn nhất của hàm số đã cho trên đoạn \(\left[ { - 5;\, - 2} \right]\). Giá trị của biểu thức \(P = a + b\) bằng bao nhiêu?

Xem đáp án » 26/10/2024 11

Câu 5:

Cho hàm số \[y = f\left( x \right)\]  có đồ thị hàm số như hình vẽ dưới đây.

 

Giá trị nhỏ nhất của hàm số trên đoạn \(\left[ {0;\,4} \right]\) bằng bao nhiêu?

Xem đáp án » 26/10/2024 10

Câu 6:

Đồ thị hàm số \(y =  - {x^3} - x + 2\) là đường cong nào trong các đường cong sau?

Xem đáp án » 26/10/2024 10

Câu 7:

Cho hàm số \[y = f\left( x \right)\] có đồ thị như hình dưới đây.

Giá trị cực đại của hàm số đã cho bằng

Xem đáp án » 26/10/2024 9

Câu 8:

Cho hàm số \[y = f\left( x \right)\] có bảng biến thiên như hình vẽ sau:

Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là

Xem đáp án » 26/10/2024 9

Câu 9:

Cho hàm số \(y = \frac{{3x + 1}}{{1 - x}}\). Phát biểu nào sau đây là đúng?

Xem đáp án » 26/10/2024 9

Câu 10:

Trên đoạn \(\left[ {1;\,\,5} \right]\), giá trị lớn nhất của hàm số \[f\left( x \right) = \sqrt {11 - 2x} \] bằng

Xem đáp án » 26/10/2024 9

Câu 11:

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau:

Đồ thị của hàm số trên cắt trục hoành tại bao nhiêu điểm?

Xem đáp án » 26/10/2024 9

Câu 12:

Cho hình lăng trụ \(ABC.A'B'C'\), \(M\) là trung điểm của \(BB'\). Đặt \(\overrightarrow {CA}  = \overrightarrow a \), \(\overrightarrow {CB}  = \overrightarrow b \), \(\overrightarrow {AA'}  = \overrightarrow c \). Khẳng định nào sau đây đúng?

Xem đáp án » 26/10/2024 9

Câu 13:

PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình dưới đây.

a) Hàm số đã cho đồng biến trên khoảng \(\left( {2;\, + \infty } \right)\).

b) Hàm số đã cho đạt cực đại tại \(x = 0\); đạt cực tiểu tại \(x = 2\).

c) Trên đoạn \(\left[ {0;\,2} \right]\), giá trị lớn nhất của hàm số đã cho bằng \(0\).

d) Phương trình \(3f\left( x \right) + 4 = 0\) có 3 nghiệm.

Xem đáp án » 26/10/2024 9

Câu 14:

Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\)\(AB = AD = 1\)\(AA' = 2\).

a) \(\overrightarrow {AD'}  = \overrightarrow {BC'} \).

b) \(\left| {\overrightarrow {BD} } \right| = \left| {\overrightarrow {CD'} } \right| = \sqrt 2 \).

c) \(\overrightarrow {AC'}  + \overrightarrow {CA'}  + 2\overrightarrow {C'C}  = \overrightarrow 0 \).

d) \(\overrightarrow {AD}  \cdot \overrightarrow {A'B'}  = 2\).

Xem đáp án » 26/10/2024 9

Câu 15:

Cho hình chóp tứ giác \(S.ABCD\).

Trong các vectơ có điểm đầu và điểm cuối phân biệt thuộc tập hợp các đỉnh của hình chóp tứ giác, có bao nhiêu vectơ có giá nằm trong mặt phẳng \(\left( {SCD} \right)\)?

Xem đáp án » 26/10/2024 8

Câu hỏi mới nhất

Xem thêm »
Xem thêm »