Hàm số\[y = - {x^3} + 3{x^2} + 1\] nghịch biến khi \[x\] thuộc khoảng nào sau đây?
A. \[(0;2).\]
B. \[(0; + \infty ).\]
C. \[( - \infty ;2).\]
D. \[( - \infty ;0)\] và \[(2; + \infty ).\]
Đáp án đúng là: D
Ta có:\[y' = - 3{x^2} + 6x < 0 \Leftrightarrow x \in \left( { - \infty ;0} \right) \cup \left( {2; + \infty } \right)\].
I. Nhận biết
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ. Hàm số đã cho đồng biến trên khoảng nào?
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ bên. Hàm số đã cho đồng biến trên khoảng nào dưới đây?
III. Vận dụng
Cho hàm số \(y = f(x)\). Hàm số \(y = f'(x)\) có đồ thị như hình vẽ:
Khẳng định nào sau đây là khẳng định đúng?
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau
Giá trị cực đại của hàm số \(y = f\left( x \right)\) bằng
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như hình vẽ sau
Mệnh đề nào dưới đây đúng?
Cho hàm số \(y = f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\) và có đồ thị là đường cong như hình vẽ.
Hàm số đạt cực đại tại điểm nào dưới đây?
Cho hàm số \(y = {x^2}\left( {3 - x} \right)\). Mệnh đề nào sau đây là đúng?
Hàm số \(y = \frac{1}{3}{x^3} - 2{x^2} + 4x - 1\) có bao nhiêu điểm cực trị ?
Số giá trị \[m\] nguyên để hàm số \(y = \frac{{mx + 2}}{{x + m}}\) nghịch biến trên từng khoảng xác định của nó là
Cho hàm số y = f(x) = x3 + ax2 + bx + c có đồ thị như hình bên dưới.
Chọn đáp án sai
II. Thông hiểu
Cho hàm số \[y = {x^3} + 3{x^2} - 9x + 15\]. Khẳng định nào sau đây là khẳng định sai?