Thứ năm, 09/01/2025
IMG-LOGO

Câu hỏi:

31/10/2024 9

Trong không gian \(Oxyz\), cho hai vectơ \(\overrightarrow a = \left( {1;2;3} \right)\), \(\overrightarrow b = \left( {4;5;6} \right)\). Tọa độ vectơ \(\overrightarrow a + \overrightarrow b \) là

A. \(\left( {5;7;9} \right).\)

Đáp án chính xác

B. \(\left( {3;7;9} \right).\)

C. \(\left( {5;3;9} \right).\)

D. \(\left( {3;5;9} \right).\)

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Ta có: \(\overrightarrow a + \overrightarrow b \) = \(\left( {1 + 4;2 + 5;3 + 6} \right) = \left( {5;7;9} \right)\).

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hai chiếc khinh khí cầu bay lên từ cùng một địa điểm. Chiếc thứ nhất cách điểm xuất phát 2 km về phía nam và 1 km về phía đông, đồng thời cách mặt đất 0,5 km. chiếc thứ hai mằm cách điểm xuất phát 1 km về phía bắc và 1,5 km về phía tây, đồng thời cách mặt đất 0,8 m. Chọn hệ trục \(Oxyz\) với O là gốc đặt tại điểm xuất phát của hai khinh khí cầu, mặt phẳng \(\left( {Oxy} \right)\) trùng với mặt đất với trục \(Ox\) hướng về phía nam, trục \[Oy\] hướng về phía đông và trục \(Oz\) hướng thẳng đứng lên trời, đơn vị đo lấy theo kilomet.

Hai chiếc khinh khí cầu bay lên từ cùng một địa điểm. Chiếc thứ nhất cách điểm xuất phát 2 km về phía nam và 1 km về phía đông, đồng thời cách mặt đất 0,5 km. chiếc thứ hai mằm cách điểm xuất phát 1 km về phía bắc và 1,5 km (ảnh 1)

Khi đó:

a) Với hệ tọa độ đã chọn, tọa độ khinh khí cầu thứ nhất là \(\left( {2;1;0,5} \right)\).

b) Với hệ tọa độ đã chọn, tọa độ khinh khí cầu thứ hai là \(\left( { - 1,5; - 1;0,8} \right)\).

c) Khoảng cách từ điểm xuất phát đến khinh khí cầu thứ nhất bằng \(\sqrt {21} \) km.

d) Khoảng cách hai chiếc khinh khí cầu là 3,92 km (Kết quả làm tròn đến hàng phần trăm).

Số khẳng định đúng trong các khẳng định trên là:

Xem đáp án » 31/10/2024 47

Câu 2:

Trong không gian \(Oxyz\), cho tam giác \(ABC\) có \(A\left( {1;2; - 1} \right)\), \(B\left( {2; - 1;3} \right)\), \(C\left( { - 4;7;5} \right)\). Gọi \(D\left( {a;b;c} \right)\) là chân đường phân giác trong góc \(B\) của tam giác \(ABC\). Giá trị \(a + b + 2c\) bằng

Trong không gian  O x y z , cho tam giác  A B C  có  A ( 1 ; 2 ; − 1 ) ,  B ( 2 ; − 1 ; 3 ) ,  C ( − 4 ; 7 ; 5 ) . Gọi  D ( a ; b ; c )  là chân đường phân giác trong góc  B  của tam giác  A B C . Giá trị  a + b + 2 c  bằng (ảnh 1)

Xem đáp án » 31/10/2024 17

Câu 3:

Trong không gian \(Oxyz\), cho vectơ \(\overrightarrow u = \left( {1; - 2;3} \right)\). Vectơ nào sau đây cùng phương với vectơ \(\overrightarrow u \) ?

Xem đáp án » 31/10/2024 14

Câu 4:

 

Trong không gian \(Oxyz\), cho hình thang \(ABCD\) vuông tại \(A\) và \(B\). Ba đỉnh \(A\left( {1;2;1} \right)\), \(B\left( {2;0; - 1} \right)\), \(C\left( {6;1;0} \right)\). Hình thang có diện tích bằng \(6\sqrt 2 \). Giả sử đỉnh \(D\left( {a;b;c} \right)\), tìm mệnh đề đúng.

Xem đáp án » 31/10/2024 13

Câu 5:

Trong không gian \(Oxyz\), cho hai điểm \(M\left( {1; - 2;2} \right)\) và \(N\left( {1;0;4} \right)\). Tọa độ trung điểm của đoạn thẳng \(MN\) là

Xem đáp án » 31/10/2024 12

Câu 6:

Trong không gian \(Oxyz\), cho hai vectơ \(\overrightarrow a = \left( {1; - 2;3} \right)\) và \(\overrightarrow b = \left( { - 2;1;2} \right)\). Tích vô hướng \(\left( {\overrightarrow a + \overrightarrow b } \right)\overrightarrow b \) bằng

Xem đáp án » 31/10/2024 12

Câu 7:

Trong không gian \(Oxyz\), cho điểm \(G\left( {1; - 2;3} \right)\) và ba điểm \(A\left( {a;0;0} \right)\), \(B\left( {0;b;0} \right)\), \(C\left( {0;0;c} \right)\). Biết \(G\) là trọng tâm của của tam giác \(ABC\) thì \(a + b + c\) bằng

Xem đáp án » 31/10/2024 12

Câu 8:

Trong không gian \(Oxyz\), cho ba điểm \(M\left( {2; - 3; - 1} \right)\), \(N\left( {0;3;1} \right)\), \(P\left( {1;m - 1;2} \right)\). Với giá trị nào của \(m\) thì tam giác \(MNP\) vuông tại \(N\)?

Xem đáp án » 31/10/2024 12

Câu 9:

Trong không gian \(Oxyz\), cho các điểm \(A\left( {1;3;5} \right)\), \(B\left( {1;1;3} \right)\), \(C\left( {4; - 2;3} \right)\).

Khi đó:

a) Tọa độ trung điểm \(BC\) là \(\left( {\frac{5}{2}; - \frac{1}{2};3} \right)\).

b) Độ dài đoạn thẳng \(BC\) là \(3\sqrt 2 \).

c) Côsin \(\widehat {BAC}\) bằng \(\frac{{7\sqrt {19} }}{{38}}\).

d) Gọi \(D\) là đỉnh thứ tư của hình bình hành \(ABCD\). Tọa độ hình chiếu của trọng tâm tam giác \(ABD\) lên mặt phẳng \(Oyz\) là \(\left( {2;0;0} \right)\).

Số mệnh đề đúng trong các mệnh đề trên là:

Xem đáp án » 31/10/2024 12

Câu 10:

III. Vận dụng

Trên phần mềm mô phỏng việc điều khiển drone giao hàng trong không gian \(Oxyz\), một đội gồm ba drone giao hàng \(A,B,C\) đang có tọa độ là \(A\left( {1;1;1} \right)\), \(B\left( {5;7;9} \right)\), \(C\left( {9;11;4} \right)\). Gọi \({d_1},{d_2},{d_3}\) lần lượt là khoảng cách của mỗi cặp drone giao hàng trên. Tính \({d_1} + {d_2} + {d_3}\). (Kết quả làm tròn đến hàng đơn vị).

Trên phần mềm mô phỏng việc điều khiển drone giao hàng trong không gian  O x y z , một đội gồm ba drone giao hàng  A , B , C  đang có tọa độ là  A ( 1 ; 1 ; 1 ) ,  B ( 5 ; 7 ; 9 ) ,  C ( 9 ; 11 ; 4 ) . Gọi  d 1 , d 2 , d 3  lần lượt là khoảng cách của mỗi cặp drone giao hàng trên. Tính (ảnh 1)

Xem đáp án » 31/10/2024 12

Câu 11:

Trong không gian \(Oxyz\), cho ba điểm \(A\left( {3;2; - 5} \right)\), \(B\left( {1;2;4} \right)\), \(C\left( {2;5; - 2} \right)\). Tọa độ trọng tâm \(G\) của tam giác \(ABC\) là

Xem đáp án » 31/10/2024 11

Câu 12:

II. Thông hiểu

Trong không gian \(Oxyz\), cho hai vectơ \(\overrightarrow u = \left( {1;2;3} \right)\) và \(\overrightarrow v = \left( {4; - 5;6} \right)\). Vectơ \(2\overrightarrow u - 3\overrightarrow v \) cùng phương với vectơ nào?

Xem đáp án » 31/10/2024 11

Câu 13:

Trong không gian \(Oxyz\), cho hai điểm \(A\left( {0;2;1} \right)\) và \(B\left( {3; - 2;1} \right)\). Độ dài đoạn thẳng \(AB\) bằng

Xem đáp án » 31/10/2024 11

Câu 14:

Trong không gian \(Oxyz\), cho hai vectơ \(\overrightarrow a = \left( { - 1 - 1;0} \right)\) và \(\overrightarrow b = \left( {0; - 1;0} \right)\). Góc giữa hai vectơ này là:

Xem đáp án » 31/10/2024 11

Câu 15:

I. Nhận biết

Trong không gian \(Oxyz\), cho vectơ \(\overrightarrow a = \left( { - 2;6;2} \right)\). Vectơ \(\frac{3}{2}\overrightarrow a \) có tọa độ là

Xem đáp án » 31/10/2024 10

Câu hỏi mới nhất

Xem thêm »
Xem thêm »