III. Vận dụng
Trên phần mềm mô phỏng việc điều khiển drone giao hàng trong không gian \(Oxyz\), một đội gồm ba drone giao hàng \(A,B,C\) đang có tọa độ là \(A\left( {1;1;1} \right)\), \(B\left( {5;7;9} \right)\), \(C\left( {9;11;4} \right)\). Gọi \({d_1},{d_2},{d_3}\) lần lượt là khoảng cách của mỗi cặp drone giao hàng trên. Tính \({d_1} + {d_2} + {d_3}\). (Kết quả làm tròn đến hàng đơn vị).
A. \(31.\)
B. \(32.\)
C. \(25\).
D. \(5\)
Đáp án đúng là: A
Ta có: \({d_1} = AB = \sqrt {{{\left( {1 - 5} \right)}^2} + {{\left( {1 - 7} \right)}^2} + {{\left( {1 - 9} \right)}^2}} = 2\sqrt {29} \);
\({d_2} = BC = \sqrt {{{\left( {5 - 9} \right)}^2} + {{\left( {7 - 11} \right)}^2} + {{\left( {9 - 4} \right)}^2}} \)\( = \sqrt {57} \);
\({d_3} = AC = \sqrt {{{\left( {1 - 9} \right)}^2} + {{\left( {1 - 11} \right)}^2} + {{\left( {1 - 4} \right)}^2}} = \sqrt {173} \).
Vậy \({d_1} + {d_2} + {d_3} = 2\sqrt {29} + \sqrt {57} + \sqrt {173} \) ≈ 31.
Trong không gian \(Oxyz\), cho hai vectơ \(\overrightarrow u = \left( {1;2;3} \right)\) và \(\overrightarrow v = \left( {4; - 5;6} \right)\). Vectơ \(2\overrightarrow u - 3\overrightarrow v \) cùng phương với vectơ nào?
Trong không gian \(Oxyz\), cho hai vectơ \(\overrightarrow a = \left( { - 1 - 1;0} \right)\) và \(\overrightarrow b = \left( {0; - 1;0} \right)\). Góc giữa hai vectơ này là:
Trong không gian \(Oxyz\), cho điểm \(G\left( {1; - 2;3} \right)\) và ba điểm \(A\left( {a;0;0} \right)\), \(B\left( {0;b;0} \right)\), \(C\left( {0;0;c} \right)\). Biết \(G\) là trọng tâm của của tam giác \(ABC\) thì \(a + b + c\) bằng
Trong không gian \(Oxyz\), cho ba điểm \(M\left( {2; - 3; - 1} \right)\), \(N\left( {0;3;1} \right)\), \(P\left( {1;m - 1;2} \right)\). Với giá trị nào của \(m\) thì tam giác \(MNP\) vuông tại \(N\)?
Trong không gian \(Oxyz\), cho vectơ \(\overrightarrow u = \left( {1; - 2;3} \right)\). Vectơ nào sau đây cùng phương với vectơ \(\overrightarrow u \) ?
Trong không gian \(Oxyz\), cho ba điểm \(A\left( {3;2; - 5} \right)\), \(B\left( {1;2;4} \right)\), \(C\left( {2;5; - 2} \right)\). Tọa độ trọng tâm \(G\) của tam giác \(ABC\) là
Trong không gian \(Oxyz\), cho hai vectơ \(\overrightarrow a = \left( {1;2;3} \right)\), \(\overrightarrow b = \left( {4;5;6} \right)\). Tọa độ vectơ \(\overrightarrow a + \overrightarrow b \) là
Trong không gian \(Oxyz\), cho hai điểm \(A\left( {0;2;1} \right)\) và \(B\left( {3; - 2;1} \right)\). Độ dài đoạn thẳng \(AB\) bằng
Trong không gian \(Oxyz\), cho hai vectơ \(\overrightarrow a = \left( {3;0;1} \right)\) và \(\overrightarrow c = \left( {1;1;0} \right)\). Tọa độ của vectơ \(\overrightarrow b \) thỏa mãn đẳng thức \(\overrightarrow b - \overrightarrow a + 2\overrightarrow c = \overrightarrow 0 \) là
Trong không gian \(Oxyz\), cho ba điểm \(A\left( {0;1; - 1} \right)\), \(B\left( {1;2;0} \right)\), \(\left( {m;n;0} \right)\). Giá trị \(m,n\) sao cho ba điểm \(A,B,C\) thẳng hàng:
Trong không gian \(Oxyz\), cho hai vectơ \(\overrightarrow a = \left( {1; - 2;3} \right)\) và \(\overrightarrow b = \left( { - 2;1;2} \right)\). Tích vô hướng \(\left( {\overrightarrow a + \overrightarrow b } \right)\overrightarrow b \) bằng
Trong không gian \(Oxyz\), cho ba điểm \(A\left( { - 1; - 2;3} \right)\), \(B\left( {0;3;1} \right)\), \(C\left( {4;2;2} \right)\). Giá trị \(\cos \left( {\widehat {BAC}} \right)\) bằng
Trong không gian \(Oxyz\), cho các điểm \(A\left( {1;3;5} \right)\), \(B\left( {1;1;3} \right)\), \(C\left( {4; - 2;3} \right)\).
Khi đó:
a) Tọa độ trung điểm \(BC\) là \(\left( {\frac{5}{2}; - \frac{1}{2};3} \right)\).
b) Độ dài đoạn thẳng \(BC\) là \(3\sqrt 2 \).
c) Côsin \(\widehat {BAC}\) bằng \(\frac{{7\sqrt {19} }}{{38}}\).
d) Gọi \(D\) là đỉnh thứ tư của hình bình hành \(ABCD\). Tọa độ hình chiếu của trọng tâm tam giác \(ABD\) lên mặt phẳng \(Oyz\) là \(\left( {2;0;0} \right)\).
Số mệnh đề đúng trong các mệnh đề trên là:
Cho hai vectơ \(\overrightarrow u = \left( {2; - 2; - 3} \right)\) và \(\overrightarrow v = \left( {3;3;5} \right)\). Vectơ nào dưới đây vuông góc với cả hai vectơ \(\overrightarrow u \) và \(\overrightarrow v \) ?
I. Nhận biết
Trong không gian \(Oxyz\), cho vectơ \(\overrightarrow a = \left( { - 2;6;2} \right)\). Vectơ \(\frac{3}{2}\overrightarrow a \) có tọa độ là