Thứ sáu, 22/11/2024
IMG-LOGO

Câu hỏi:

31/10/2024 6

Trong không gian \(Oxyz\), cho các điểm \(A\left( {1;3;5} \right)\), \(B\left( {1;1;3} \right)\), \(C\left( {4; - 2;3} \right)\).

Khi đó:

a) Tọa độ trung điểm \(BC\) là \(\left( {\frac{5}{2}; - \frac{1}{2};3} \right)\).

b) Độ dài đoạn thẳng \(BC\) là \(3\sqrt 2 \).

c) Côsin \(\widehat {BAC}\) bằng \(\frac{{7\sqrt {19} }}{{38}}\).

d) Gọi \(D\) là đỉnh thứ tư của hình bình hành \(ABCD\). Tọa độ hình chiếu của trọng tâm tam giác \(ABD\) lên mặt phẳng \(Oyz\) là \(\left( {2;0;0} \right)\).

Số mệnh đề đúng trong các mệnh đề trên là:

A. \(1.\)

B. \(2.\)

C. \(3.\)

Đáp án chính xác

D. \(4.\)

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

a) Gọi \(I\left( {x;y;z} \right)\) là trung điểm \(BC\).

Ta có: \(\left\{ \begin{array}{l}x = \frac{{1 + 4}}{2} = \frac{5}{2}\\y = \frac{{1 + \left( { - 2} \right)}}{2} = - \frac{1}{2}\\z = \frac{{3 + 3}}{2} = 3\end{array} \right.\) ⇒ \(I\left( {\frac{5}{2}; - \frac{1}{2};3} \right)\).

Vậy a đúng.

b) Ta có: \(\overrightarrow {BC} = \left( {3; - 3;0} \right)\) ⇒ \(BC = \sqrt {{3^2} + {{\left( { - 3} \right)}^2} + {0^2}} = 3\sqrt 2 \) suy ra b đúng.

c) Ta có: \(\overrightarrow {AB} = \left( {0; - 2; - 2} \right),\overrightarrow {AC} = \left( {3; - 5; - 2} \right)\).

Do đó, \(\cos \widehat {BAC} = \cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = \frac{{\overrightarrow {AB} .\overrightarrow {AC} }}{{\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|}}\)

\( = \frac{{0.3 + \left( { - 2} \right).\left( { - 5} \right) + \left( { - 2} \right).\left( { - 2} \right)}}{{\sqrt {{0^2} + {{\left( { - 2} \right)}^2} + {{\left( { - 2} \right)}^2}} .\sqrt {{3^2} + {{\left( { - 5} \right)}^2} + {{\left( { - 2} \right)}^2}} }} = \frac{{7\sqrt {19} }}{{38}}.\)

Vậy ý c đúng.

d) Gọi \(D\left( {x;y;z} \right)\). Có \(\overrightarrow {AB} = \overrightarrow {DC} \).

Ta có: \(\overrightarrow {AB} = \left( {0; - 2; - 2} \right)\), \(\overrightarrow {DC} = \left( {4 - x; - 2 - y;3 - z} \right)\).

Suy ra \(\left\{ \begin{array}{l}4 - x = 0\\ - 2 - y = - 2\\3 - z = - 2\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = 4\\y = 0\\z = 5\end{array} \right.\) ⇒ \(D\left( {4;0;5} \right)\).

Gọi \(G\left( {a;b;c} \right)\) là trọng tâm tam giác \(ABD\).

Ta có: \(\left\{ \begin{array}{l}a = \frac{{1 + 1 + 4}}{3} = 2\\b = \frac{{3 + 1 + 0}}{3} = \frac{4}{2}\\c = \frac{{5 + 3 + 5}}{3} = \frac{{13}}{3}\end{array} \right.\) ⇒ \(G\left( {2;\frac{4}{3};\frac{{13}}{3}} \right)\).

Tọa độ hình chiếu của trọng tâm \(G\) của tam giác \(ABD\) lên mặt phẳng \(Oyz\) là \(\left( {0;\frac{4}{3};\frac{{13}}{3}} \right)\).

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian \(Oxyz\), cho vectơ \(\overrightarrow u = \left( {1; - 2;3} \right)\). Vectơ nào sau đây cùng phương với vectơ \(\overrightarrow u \) ?

Xem đáp án » 31/10/2024 6

Câu 2:

II. Thông hiểu

Trong không gian \(Oxyz\), cho hai vectơ \(\overrightarrow u = \left( {1;2;3} \right)\) và \(\overrightarrow v = \left( {4; - 5;6} \right)\). Vectơ \(2\overrightarrow u - 3\overrightarrow v \) cùng phương với vectơ nào?

Xem đáp án » 31/10/2024 6

Câu 3:

Trong không gian \(Oxyz\), cho hai điểm \(A\left( {0;2;1} \right)\) và \(B\left( {3; - 2;1} \right)\). Độ dài đoạn thẳng \(AB\) bằng

Xem đáp án » 31/10/2024 6

Câu 4:

Trong không gian \(Oxyz\), cho hai vectơ \(\overrightarrow a = \left( {3;0;1} \right)\) và \(\overrightarrow c = \left( {1;1;0} \right)\). Tọa độ của vectơ \(\overrightarrow b \) thỏa mãn đẳng thức \(\overrightarrow b - \overrightarrow a + 2\overrightarrow c = \overrightarrow 0 \) là

Xem đáp án » 31/10/2024 6

Câu 5:

Trong không gian \(Oxyz\), cho hai vectơ \(\overrightarrow a = \left( { - 1 - 1;0} \right)\) và \(\overrightarrow b = \left( {0; - 1;0} \right)\). Góc giữa hai vectơ này là:

Xem đáp án » 31/10/2024 6

Câu 6:

Trong không gian \(Oxyz\), cho hai vectơ \(\overrightarrow a = \left( {1; - 2;3} \right)\) và \(\overrightarrow b = \left( { - 2;1;2} \right)\). Tích vô hướng \(\left( {\overrightarrow a + \overrightarrow b } \right)\overrightarrow b \) bằng

Xem đáp án » 31/10/2024 6

Câu 7:

Trong không gian \(Oxyz\), cho điểm \(G\left( {1; - 2;3} \right)\) và ba điểm \(A\left( {a;0;0} \right)\), \(B\left( {0;b;0} \right)\), \(C\left( {0;0;c} \right)\). Biết \(G\) là trọng tâm của của tam giác \(ABC\) thì \(a + b + c\) bằng

Xem đáp án » 31/10/2024 6

Câu 8:

Trong không gian \(Oxyz\), cho ba điểm \(M\left( {2; - 3; - 1} \right)\), \(N\left( {0;3;1} \right)\), \(P\left( {1;m - 1;2} \right)\). Với giá trị nào của \(m\) thì tam giác \(MNP\) vuông tại \(N\)?

Xem đáp án » 31/10/2024 6

Câu 9:

I. Nhận biết

Trong không gian \(Oxyz\), cho vectơ \(\overrightarrow a = \left( { - 2;6;2} \right)\). Vectơ \(\frac{3}{2}\overrightarrow a \) có tọa độ là

Xem đáp án » 31/10/2024 5

Câu 10:

Trong không gian \(Oxyz\), cho hai điểm \(M\left( {1; - 2;2} \right)\) và \(N\left( {1;0;4} \right)\). Tọa độ trung điểm của đoạn thẳng \(MN\) là

Xem đáp án » 31/10/2024 5

Câu 11:

Trong không gian \(Oxyz\), cho ba điểm \(A\left( {3;2; - 5} \right)\), \(B\left( {1;2;4} \right)\), \(C\left( {2;5; - 2} \right)\). Tọa độ trọng tâm \(G\) của tam giác \(ABC\) là

Xem đáp án » 31/10/2024 5

Câu 12:

Trong không gian \(Oxyz\), cho hai vectơ \(\overrightarrow a = \left( {1;2;3} \right)\), \(\overrightarrow b = \left( {4;5;6} \right)\). Tọa độ vectơ \(\overrightarrow a + \overrightarrow b \) là

Xem đáp án » 31/10/2024 5

Câu 13:

Trong không gian \(Oxyz\), cho ba điểm \(A\left( {0;1; - 1} \right)\), \(B\left( {1;2;0} \right)\), \(\left( {m;n;0} \right)\). Giá trị \(m,n\) sao cho ba điểm \(A,B,C\) thẳng hàng:

Xem đáp án » 31/10/2024 5

Câu 14:

Trong không gian \(Oxyz\), cho ba điểm \(A\left( { - 1; - 2;3} \right)\), \(B\left( {0;3;1} \right)\), \(C\left( {4;2;2} \right)\). Giá trị \(\cos \left( {\widehat {BAC}} \right)\) bằng

Xem đáp án » 31/10/2024 5

Câu 15:

Trong không gian \(Oxyz\), cho tam giác \(ABC\) có \(A\left( {1;2; - 1} \right)\), \(B\left( {2; - 1;3} \right)\), \(C\left( { - 4;7;5} \right)\). Gọi \(D\left( {a;b;c} \right)\) là chân đường phân giác trong góc \(B\) của tam giác \(ABC\). Giá trị \(a + b + 2c\) bằng

Trong không gian  O x y z , cho tam giác  A B C  có  A ( 1 ; 2 ; − 1 ) ,  B ( 2 ; − 1 ; 3 ) ,  C ( − 4 ; 7 ; 5 ) . Gọi  D ( a ; b ; c )  là chân đường phân giác trong góc  B  của tam giác  A B C . Giá trị  a + b + 2 c  bằng (ảnh 1)

Xem đáp án » 31/10/2024 5

Câu hỏi mới nhất

Xem thêm »
Xem thêm »